Recent results with boosted top

Konstantinos Kousouris CERN

On behalf of the ATLAS and CMS collaborations

OLOMOUC, CZECH REPUBLIC

9th International Workshop on Top Quark Physics 19 - 23 September 2016

motivation & challenges

- measurements with boosted top quarks
 - differential cross sections for top pair production @ 8 & 13 TeV
- top properties
- searches with boosted top quarks
- new heavy particles decaying to top pairs

Large Hadron Collider

Why boosted tops?

LHC is a top factory

- high centre-of-mass energy combined with large datasets
- access to previously unaccessible corners of phase space
- differential measurements are feasible
 - confront the theory predictions and constrain fundamental QCD

✓ / manifest in final states with high p_T (boosted) top

- challenge: reconstruction of boosted top quarks
 - appear as a large-radius jet
 - rule of thumb: p_T ~ 2M/R

Challenges

- discriminate boosted tops from ordinary QCD jets
 - reconstruct large-radius jets (anti-k_T or Cambridge-Aachen algorithms)
 - exploit substructure properties
 - established techniques and new ideas (area of active development !)

mitigate pileup contamination

- grooming methods to remove irrelevant soft particles
- reject tracks/particles from pileup vertices
- identify leptons within the boosted top
 - non-isolated leptons in leptonic decays
- tag b-jets within the boosted top
 - subjet b tagging with dedicated algorithms

details in J. Caudron's talk "Boosted top: new algorithms and perspectives"

Precision measurements

CMS measurement @ 8 TeV

- semileptonic decay
 - leptonic top triggers the event
- inclusive & differential vs hadronic top kinematic variables (p_T, y)
 - for top p_T > 400 GeV
 - detector, particle, & parton level

reconstruction

- small-R jets (AK5)
- large-R jets (CA8)
- leptons (µ, e)
 - p_T > 45 (μ), 35 (e) GeV
 - $\Delta R(I, small-R jet) > 0.5 II p_T^{rel} > 25 GeV$
- top tagging: CMS top tagger

arXiv:1605.00116 (accepted by PRD)

signal extraction

maximum likelihood fit in 3 categories based on top and b tags

unfolding to particle & parton level

- separately in electron and muon channels
- SVD in RooUnfold
- results
 - integrated cross section overestimated by $\sim 14\%$, but consistent within uncertainties
 - significant differences between MC models in the description of the differential cross section

Konstantinos Kousouris

TOP2016

PRD 93 (2016) 032009

Pair production of top quarks @ 8 TeV

160

ATLAS

- semileptonic decay
 - leptonic top triggers the event
- differential vs hadronic top p_T
 - for top $p_T > 300 \text{ GeV}$
 - detector, particle, & parton level

reconstruction

- small-R jets (AK4)
- large-R jets (AK10)
 - trimming (R_{sub} = 0.3 & f_{cut} = 0.05)
- leptons (μ , e)
 - p_T > 25 GeV
 - mini-isolation
- top tagging k_t splitting scale $(jet an asstr/p_T^l)$ tracks

Konstantinos Kousouris

√s=8 TeV, 20.3 fb - Data

200

19.7 fb⁻¹ (8 TeV)

220

lepton

рт

240

b-iet

tt Single lepton tt Dilepton

W+jets Z+jets

Single top

Diboson Multijet

signal extraction

background estimated with data-driven methods

unfolding to particle & parton level

- electron and muon channels combined at detector level, before unfolding
- SVD

results

- all generators predict a harder top p⊤ spectrum
 - difference increases with top p_T
- predictions are consistent with data within the uncertainties (correlated vs top p_T)

Differential cross section vs top mass @ 8 TeV

Charge asymmetry @ 8 TeV PLB 756 (2016) 52

TOP2016

ATLAS measurement @ 13 TeV

- semileptonic decay
 - leptonic top triggers the event
- differential vs hadronic top kinematic variables (p_T, y) and ttbar system
 - for top $p_T > 300 \text{ GeV}$
 - particle level

reconstruction

- small-R jets (AK4)
- large-R jets (AK10)
 - trimming ($R_{sub} = 0.3 \& f_{cut} = 0.05$)
- leptons (µ, e)

TOP2016

- p_T > 25 GeV
- mini-isolation
- top tagging: N-subjettiness ratio τ₃₂ + hard subjets + mass compatible with a top quark
- resolved & boosted selections (non exclusive)

ATLAS-CONF-2016-040

8

TOP2016

$$\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\mathcal{L} \cdot \Delta X^{i}} \cdot \frac{1}{\epsilon^{i}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{\mathrm{match}}^{j} \cdot f_{\mathrm{acc}}^{j} \cdot \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bg}}^{j}\right)$$

signal extraction

- background estimated with data-driven methods
- unfolding to particle level
 - electron and muon channels combined at detector level, before unfolding

<u>S</u>

d'Agostini iterative method

results

- no MC generator can describe all distributions
 - resolved and boosted selections alike
- most significant tension in the top pT
 - cannot be accounted for by EWK corrections
 - NLO+PS models predict a harder spectrum
 - the agreement improves with NNLO calculations at parton level

Konstantinos Kousouris

250 CMS

200

150

100

50

Preliminary

100

GeV

ß

Events /

CMS/

CMS measurement @ 13 TeV

- all-hadronic decay
 - large BR
 - efficiency increases with p_T
- differential vs leading top p_T
 - for top $p_T > 450 \text{ GeV}$
 - parton level

reconstruction

- small-R jets (AK4)
- large-R jets (AK8)
 - soft-drop (β=0, identical to modified mass-drop tagger)
- dedicated top pair tagging: Fisher discriminant using τ_{31} and τ_{32} of both jets
- subjet b tagging
- resolved & boosted selections (non exclusive)

CMS-PAS-TOP-16-013

TOP2016

Konstantinos Kousouris

signal extration

- template fit to the data
- data-driven background shape estimate
- result at detector level
 - resolved: systematics limited
 - boosted: statistics limited
 - MC generators do not describe the data
 - softer measured spectrum

TOP2016

unfolding to parton level

- d'Agostini iterative method

results

- agreement between the two selections in the overlapping region
- all generators predict a harder top p_T spectrum
 - difference increases with top p_T

Searches for new physics

highlights from ttbar resonances

details in dedicated talks

- 1. M. Missiroli: "Searches for ttbar resonances with the CMS detector at 13 TeV"
- 2. K. Jones: "Searches for new resonances decaying to top quarks"
- 3. A. Barker: "Searches for vector like quarks"
- 4. A. Lipniacka: "Searches for SUSY with top quarks"

Resonances decaying to top quarks

- CMS search @ 13 TeV
 - semileptonic final state
- object reconstruction
 - small-R jets (AK4)
 - large-R jets (AK8)
 - soft-drop
 - lepton $p_T > 45$ GeV
 - mini-isolation
- top tagging
 - N-subjettiness ratio τ₃₂ + large-R jet mass
- results
 - 3 categories based on top and b tags
 - search performed on the top pair mass
 - signal models: Z' (various widths), KK gluons
 - no excess observed !
 - same sensitivity as the 8 TeV dataset
 - great prospects with the 2016 dataset

20

Resonances decaying to top quarks

- CMS search @ 13 TeV
 - all-hadronic final state
- object reconstruction
 - large-R jets (AK8)
 - soft-drop
- top tagging
 - N-subjettiness ratio τ₃₂ + large-R jet mass
 - subjet b tagging
- results

TOP2016

- 6 categories based on b tags and I∆yI
- search performed on the top pair mass
- signal models: Z' (various widths), RS gravitons
- no excess observed !
 - same sensitivity as the 8 TeV dataset
 - great prospects with the 2016 dataset

Resonances decaying to top quarks

- ATLAS search @ 13 TeV
 - semileptonic final state
- object reconstruction
 - small-R jets (AK4)
 - track jets (AK2)
 - large-R jets (AK10)
 - trimming ($R_{sub} = 0.2 \& f_{cut} = 0.05$)
 - lepton $p_T > 45$ GeV
 - mini-isolation
- top tagging
 - N-subjettiness ratio τ₃₂ + large-R jet mass
- results
 - search performed on the top pair mass with BUMPHUNTER
 - signal models: Z' (various widths)
 - no excess observed !

Events / 500 GeV

Data / Bkg.

Summary

\diamond copious production of high p_T top quarks at LHC

- high boost ⇒ collimated top decay products
- identification of boosted tops with sophisticated reconstruction techniques
- semileptonic and all-hadronic final states
- ample statistics with the 2016 dataset (stay tuned for many new results !)

precision measurements

- differential cross sections vs various observables
- top p_T spectrum measured beyond the TeV scale
- general observation: NLO+PS generators predict much harder top p_T spectrum
- boosted tops have been used to measure other properties, such as the top mass and the charge asymmetry
- the 8 TeV and first 13 TeV analyses have made us wiser: *over-conservatism* in systematic uncertainties is being reconsidered (room for more precise measurements with the 2016 dataset)

new physics with boosted tops

- many searches are being performed in final states with high p_T tops
- no hint so far but sensitivity is being pushed to much higher scale

