Studies of $t\bar{t}+V$ at CMS

Illia Khvastunov

University of Ghent, CEA Saclay

on behalf of the CMS Collaboration TOP2016

September 21, 2016

Illia Khvastunov

Studies of tt+V at CMS

September 21, 2016 1 / 19

- Introduction and experimental status of $t\bar{t}\gamma$, $t\bar{t}W$ and $t\bar{t}Z$ processes.
- (NEW) Measurement of the tt γ production cross section at 8 TeV (19.7 fb⁻¹) (CMS-PAS-TOP-14-008)
- (NEW) Measurement of the top pair-production in association with a Z boson in pp collisions at 13 TeV using 2015 data (2.7 fb⁻¹) (CMS-PAS-TOP-16-009)
- (NEW) Measurement of the top pair-production in association with a W or Z boson in pp collisions at 13 TeV using 2016 data (12.9 $\rm fb^{-1}$) (CMS-PAS-TOP-16-017)

- The observed yields and measured cross-sections could be altered by new physics, these processes are the main background for ttH and for BSM processes
- $\bullet\,$ Strength of the electromagnetic coupling of top quark and γ can be probed
- Direct measurement of coupling of the heaviest quark with Z boson

$t\bar{t}\gamma$ measurement: strategy

Old 8 TeV measurement (CMS-TOP-13-011)

 $\sigma_{\mathrm{tt}\bar{\gamma}}=$ 2400 \pm 200 (stat.) \pm 600 (syst.) fb

New 8 TeV measurement (TOP-14-008)

- $\bullet\,$ Measure $t\bar{t}\gamma$ cross-section relative to the $t\bar{t}$ cross section
- Two categories of background:
 - Top events with fake photon (tī)
 - Non-top events with real photon (W γ , Z γ)

- Measure the **number of top quark pair events** after the top quark selection and photon selection using a to invariant mass of three jets with highest p_T
- Measure the **photon purity** using a fit to the photon charged hadron isolation, separates real photon events from other backgrounds (data-driven approach)

$t\bar{t}\gamma$ measurement: systematics and results

Source	Ratio Change (%)
Statistical likelihood fit	15.5
Top quark mass	7.9
Jet energy scale	6.9
Fact. and renorm. scale	6.7
ME/PS matching thresh.	3.9
Photon energy scale	2.4
Jet energy resolution	2.3
Multijet estimate	2.0
Electron fake rate	1.3
Z+jets scale factor	0.8
Pileup	0.6
Background normalization	0.6
Top p_T reweighting	0.4
b-tagging scale factor	0.3
Muon efficiency	0.3
Electron efficiency	0.1
Parton Distribution Function	0.1
Muon energy scale	0.1
Electron energy scale	0.1
Total	20.7

Category	R	$\sigma_{t\bar{t}+\gamma}^{\rm fid}$ (fb)	$\sigma_{t\bar{t}+\gamma} \times \mathcal{B} (\mathrm{fb})$	
e+jets	$(5.7 \pm 1.8) \times 10^{-4}$	139 ± 45	582 ± 187	
$\mu + \text{jets}$	$(4.7 \pm 1.3) \times 10^{-4}$	115 ± 32	453 ± 124	
Combination	$(5.2 \pm 1.1) \times 10^{-4}$	127 ± 27	515 ± 108	CMS
Theory	-	-	592 ± 71 (scale) ± 30 (PI	DE

ъ

Documented in

10.1007/JHEP01(2016)096: "Observation of top quark pairs produced in association with a vector boson in pp collisions at $\sqrt{s} = 8$ TeV"

$t\overline{t}W$	Cross sec	ction (fb)	Signal str	ength (μ)	Significa	ance (σ)
Channels	Expected	Observed	Expected	Observed	Expected	Observed
$SS + 3\ell$	203^{+84}_{-71}	382^{+117}_{-102}	$1.00\substack{+0.43 \\ -0.35}$	$1.88\substack{+0.66\\-0.56}$	3.5	4.8

$t\overline{t}Z$	Cross sec	tion (fb)	Signal str	ength (μ)	Significa	ance (σ)
Channels	Expected	Observed	Expected	Observed	Expected	Observed
$OS + 3\ell + 4\ell$	206^{+62}_{-52}	242^{+65}_{-55}	$1.00\substack{+0.34\\-0.27}$	$1.18\substack{+0.35 \\ -0.29}$	5.7	6.4

• Relative uncertainties were O(30%) for both tTW and tTZ

Towards 13 TeV analysis for $t\bar{t}V$

• Measurement is done in most sensitive channels: same-sign dilepton for $t\bar{t}W$ and 3-lepton and 4-lepton channels for $t\bar{t}Z$:

Process	$\sigma_{\rm 8TeV},{\rm pb}$	$\sigma_{13\text{TeV}}, \text{pb}$	$\sigma_{13\mathrm{TeV}}/\sigma_{8\mathrm{TeV}}$
ttZ(inclusive)	0.206	0.760	3.69
ttW(inclusive)	0.232	0.57	2.46
tt(inclusive)	234	831	3.55
WZ (to $3l$)	1.058	2.165	2.05
ZZ (to 4l)	0.078	0.157	2.03

Signal/background is better for ttZ in 13 TeV than 8 TeV, while for ttW it's worse

tīW, SS2 ℓ

- 2 same-sign leptons
- $p_T > 40,20 GeV$
- veto 3rd lepton
- at least 2 jets, 1 b-tag jet
- BDT analysis

$t\overline{t}Z$, 3ℓ

- 3 leptons
- $\bullet~\mathrm{p_T}>$ 40, 20, 10 GeV
- at least 2 jets
- $|m_{\ell\ell} M_Z| < 10 \text{ GeV}$
- C&C analysis

tīZ, 4ℓ

- 3 leptons
- $p_{\rm T} >$ 20, 10, 10, 10 GeV
- Sum of charges = 0
- at least 2 jets
- $|m_{\ell\ell} M_Z| <$ 20 GeV
- C&C analysis
- To maximise significance the number of jets and b-tagged jets are used to form signal regions

13 TeV analysis: tTW in SS 2ℓ

- For ttW in same-sign dilepton channel BDT analysis was developed
- BDT input:
 - $\bullet\,$ Number of jets; number of medium b-tagged jets; the sum of $\mathrm{p_{T}}$ of the jets
 - $\bullet\,$ Leading and trailing lepton $\mathrm{p}_{\mathrm{T}},$ transverse invariant mass of both leptons
 - $\bullet~$ Leading and subleading jet $p_{\rm T},$ missing transverse energy
 - ΔR between the trailing lepton and the nearest selected jet

13 TeV analysis: $t\bar{t}Z$ in 3ℓ and 4ℓ

3ℓ channel after selection cuts

Main backgrounds:

- tt and WZ is relevant for 3ℓ
- ZZ for 4ℓ

Nonprompt lepton background

- Nonprompt background are expected to occur mostly in tt and Drell-Yan production: an additional nonprompt lepton from the semi-leptonic decays of a b-hadron, or additional jets misidentified as lepton
- Data-driven approach is used for nonprompt background estimation
- The probability of loosely identified lepton to pass the full set of identification/isolation requirements is calculated in respective enriched region and validated in Monte-Carlo simulation

30% uncertainty covers the discrepancy between predicted and observed

Illia Khvastunov

WZ background

- MC is used for estimation
- Validate WZ in enriched control region with 85% purity:
 - 3 leptons, 2 of the form an opposite-sign same-flavour pair close to Z peak mass
 - 3rd lepton is used to form transverse mass with transverse component of missing energy
 - Cuts on low number of jets and the cut that excludes b-tag jets are used

- Overall 20% systematic uncertainty is assigned that covers uncertainty on:
 - normalization in enriched control region
 - theoretical and experimental uncertainties
 - uncertainty on extrapolation from low b-tag jet region to high b-tag jet regions.

Illia Khvastunov

Studies of tt+V at CMS

12 / 19

CMS

ZZ background

- MC is used for estimation
- Validated in enriched region with > 95% purity: requirement on two opposite-sign same-flavour pairs close to Z peak mass

- Excess in 0-jet bin, similar observation in SUSY searches (CMS-SUS-16-024)
- $\bullet~$ Inclusive yields within uncertainties; good agreement for njets ${\geq}1$ (i.e. the signal region)
- 20% uncertainty is assigned that covers the discrepancy

13 / 19

Illia Khvastunov

- Charge misidentified background is estimated using opposite-sign events and multiplied by the charge misID ratio
- $\bullet\,$ The charge misID ratio is measured in MC simulation and validated in Z $\!\!\!\to\!\!\!$ ee events in data
- Rare SM processes is estimated from simulation:
 - WZ, WWW,WWZ, WZZ, ZZZ, tītī, tī γ , tZq and Z γ are generated with MADGRAPH at NLO, W γ LO MADGRAPH
 - tTH and ZZ are produced with POWHEG at NLO
- $\bullet~t\bar{t}Z$ and $t\bar{t}W$ are simulated at LO with MADGRAPH

Source	Syst. uncertainties	Effect on x-section measurement ttW	Effect on x-section measurement ttZ
Luminosity	6.2%	7-10%	8-14%
Jet Energy Scale/Resolution	1-6%	$\leq 1\%$	< 1%
Trigger	2-5%	4-7%	3-6%
BTagging	1-8%	2-6%	3-6%
PU modeling	1%	<1%	<1%
Lepton Id., Eff.	7-10%	5-9%	7-16%
μ_R/μ_F scale choice	2%	<1%	<1%
PDF choice	1%	<1%	< 1%
Non-prompt background	30%,100%	12%	7-10%
WZ background cross section	20%	<1%	5-6%
ZZ background cross section	20%	-	4%
Charge mis-identification	20%	2%	-
Rare SM bkg	50%	5%	1-2%
ttH/tZq bkg	25%	2%	0-6%
Stat nonprompt	5-50%	8%	5%
Stat rare SM processes	20-100%	5%	3%
Total	-	23%	20%

- Uncertainties on the integrated luminosity, lepton reconstruction and nonprompt background have the greatest effect both on the ttW and ttZ cross-section measurement.
- Uncertainty on WZ and ZZ background gives a significant contribution to the systematic uncertainty of ttZ cross section measurement.

Results: CMS-TOP-16-017, ttW SS 2ℓ

• $\sigma_{\text{measured}}(t\bar{t}W) = 0.98^{+0.23}_{-0.22}(\text{stat.}) \, {}^{+0.22}_{-0.18}(\text{sys.}) \text{ pb}$

• $\sigma_{\text{theoretical}}(t\bar{t}W) = 0.6^{+0.06}_{-0.05}(\text{scale}) \stackrel{+0.01}{_{-0.01}}(\text{pdf}) \stackrel{+0.01}{_{-0.01}}(\alpha_s) \text{ pb (NLO in QCD and EW)}$

Exptected significance - 2.6, observed 3.9

Results: CMS-TOP-16-017 tTZ 3 ℓ and 4 ℓ

• $\sigma_{\rm measured}(t\bar{t}Z) = 0.70^{+0.16}_{-0.15}(\text{stat.}) \, {}^{+0.14}_{-0.12}(\text{sys.}) \, \text{pb}$

- $\sigma_{\text{theoretical}}(t\bar{t}Z) = 0.84^{+0.08}_{-0.09}(\text{scale}) \stackrel{+0.03}{_{-0.03}}(\text{pdf}) \stackrel{+0.03}{_{-0.03}}(\alpha_s) \text{ pb (NLO in QCD and EW)}$
- CMS

Combined significance: 5.8 expected and 4.6 observed

Illia Khvastunov

Results: fit in 2D

Channel	Expected significance	Observed significance
2ℓss analysis (t T W)	2.6	3.9
3ℓ analysis (tīZ)	5.4	3.8
4ℓ analysis (tīZ)	2.4	2.8
3ℓ and 4ℓ combined (ttZ)	5.8	4.6

Studies of tt+V at CMS

< 一型

ъ

Conclusions

- New $t\bar{t}\gamma$ measurement: app. 21% uncertainty (stats limited)
- Measurement of $t\bar{t} + V$ cross-section is done at 13 TeV with statistical uncertainty O(20%) and systematic uncertainty O(20%)
- Significance for tTZ process is at the discovery level
- We are excited to have more data already in 2016 (app. 3 times more)!

Back-up

Illia Khvastunov

Studies of $t\bar{t}+V$ at CMS

< ≣⇒ September 21, 2016 1 / 14

<⊡> < E

8 TeV analysis: 2D Fit

• Profile likelihood as a function of $\sigma(t\bar{t}W)$ and $\sigma(t\bar{t}Z)$, measured cross section is in agreement with theoretical prediction within 2 σ s

Studies of tt+V at CMS

CMS.

8 TeV analysis: tZ coupling interpretation in EFT

$$\begin{split} C_{1,V} &= C_V^{\mathrm{SM}} + \frac{1}{4\sin\theta_w\cos\theta_w} \frac{v^2}{\Lambda^2} \mathrm{Re}[\vec{c}_{HQ} - \bar{c}_{HQ} - \bar{c}_{Hu}],\\ C_{1,A} &= C_A^{\mathrm{SM}} - \frac{1}{4\sin\theta_w\cos\theta_w} \frac{v^2}{\Lambda^2} \mathrm{Re}[\vec{c}_{HQ} - \bar{c}_{HQ} + \bar{c}_{Hu}]. \end{split}$$

- The measured tZ interaction was interpreted in terms of effective field theory approach
- Difference between the profile likelihood and the best fit profile likelihood functions for the relative vector and axial components for the tZ coupling
- Constrain on dimension-six operators that have small effect on inclusive Higgs boson and tt production, and a large effect on ttW and ttZ

Illia Khvastunov

Studies of tt+V at CMS

8 TeV analysis: constrain on dimension-six operators

Constrain on dimension-six operators that have small effect on inclusive Higgs boson and tt
production, and a large effect on ttW and ttZ

Operator	Best fit point(s)	1 σ CL	2 <i>σ</i> CL
<i>c̄</i> _{uB}	-0.07 and 0.07	$\{-0.11, 0.11\}$	$\{-0.14, 0.14\}$
\bar{c}'_{HQ}	0.12	$\{-0.07, 0.18\}$	$\{-0.33, -0.24\}$ and $\{-0.02, 0.23\}$
\bar{c}_{HQ}	-0.09 and 0.41	$\{-0.22, 0.08\}$ and $\{0.24, 0.54\}$	$\{-0.31, 0.63\}$
\bar{c}_{Hu}	-0.47 and 0.13	$\{-0.60, -0.23\}$ and $\{-0.11, 0.26\}$	$\{-0.71, 0.37\}$
\bar{c}_{3W}	-0.28 and 0.28	$\{-0.36, -0.18\}$ and $\{0.18, 0.36\}$	$\{-0.43, 0.43\}$

$$\begin{split} C_{1,V} &= C_V^{SM} + \frac{v^2}{\Lambda^2} \mathrm{Re}[\bar{c}'_{HQ} - \bar{c}_{HQ} - \bar{c}_{Hu}], \\ C_{1,A} &= C_A^{SM} + \frac{v^2}{\Lambda^2} \mathrm{Re}[\bar{c}'_{HQ} - \bar{c}_{HQ} + \bar{c}_{Hu}]. \\ \Delta \mathcal{L} &= \frac{i\bar{c}_{Hq}}{v^2} \left(\bar{q}_L \gamma^\mu q_L \right) \left(H^\dagger \overleftrightarrow{D}_\mu H \right) + \frac{i\bar{c}'_{Hq}}{v^2} \left(\bar{q}_L \gamma^\mu \sigma^i q_L \right) \left(H^\dagger \sigma^i \overleftrightarrow{D}_\mu H \right) + \frac{i\bar{c}_{Hu}}{v^2} \left(\bar{u}_R \gamma^\mu u_R \right) \left(H^\dagger \overleftrightarrow{D}_\mu H \right) + \frac{\bar{c}_{uB} g'}{m_W^2} y_u \bar{q}_L H^c \sigma^{\mu\nu} u_R B_{\mu\nu} + \frac{\bar{c}_{3W} g^3}{m_W^2} \epsilon^{ijk} W^{i\nu}_\mu W^{j\rho}_\nu W^{k\mu}_\rho \end{split}$$

• From the cross-section scan it's observed that \bar{c}_{uB} , \bar{c}_{Hu} and \bar{c}_{HQ} affect only ttZ, \bar{c}_{3W} only ttW, \bar{c}'_{HQ} both

Illia Khvastunov

	$N_{ m jets}=2$			
Process	$N_{ m bjets}=0$	$N_{ m bjets} \geq 1$		
WZ	$34.06 \pm 0.71 {\pm} 6.81$	$12.88 \pm 0.44 {\pm} 2.58$		
ttX	$0.64\pm0.06{\pm}0.16$	$2.78\pm0.13{\pm}0.70$		
Non-prompt	$17.94 \pm 2.64 {\pm} 5.38$	$10.63 \pm 1.66 {\pm} 3.19$		
Rare	$12.52 \pm 1.48 {\pm} 6.26$	$4.44 \pm 1.03 {\pm} 2.22$		
Background	$65.16 \pm 3.11 {\pm} 10.70$	$30.74 \pm 2.01 {\pm} 4.71$		
ttZ	$0.63 \pm 0.10 {\pm} 0.08$	$2.65\pm0.19{\pm}0.17$		
Predicted	$65.79 \pm 3.12 {\pm} 10.70$	$33.38 \pm 2.02 {\pm}4.72$		
Data	64	35		

	$N_{ m jets}=3$			
Process	$N_{ m bjets}=0$	$N_{ m bjets}=1$	$N_{ m bjets} \geq 2$	
WZ	$7.67 \pm 0.32 {\pm} 1.53$	$3.88 \pm 0.24 \pm 0.78$	$0.73 \pm 0.10 {\pm} 0.15$	
ttX	$0.23 \pm 0.04 {\pm} 0.06$	$0.95 \pm 0.07 {\pm} 0.24 {\pm}$	$0.94 \pm 0.08 {\pm} 0.24$	
Non-prompt	$1.82 \pm 0.72 {\pm} 0.55$	$3.80 \pm 1.04 {\pm}1.14$	$0.21\pm0.19{\pm}0.06$	
Rare	$2.16\pm0.56{\pm}1.08$	$0.88 \pm 0.13 {\pm} 0.44$	$1.03 \pm 0.67 {\pm} 0.52$	
Background	$11.89 \pm 0.97 {\pm} 1.96$	$9.51 \pm 1.08 {\pm} 1.47$	$2.91 \pm 0.71 {\pm} 0.59$	
ttZ	$0.41 \pm 0.10 {\pm} 0.07$	$2.50\pm0.19{\pm}0.13$	$1.99 \pm 0.18 {\pm} 0.17$	
Predicted	$12.30\pm0.97{\pm}1.96$	$12.01 \pm 1.10 {\pm}1.47$	$4.91 \pm 0.73 {\pm} 0.61$	
Data	17	9	5	

	$N_{ m jets} \geq 4$			
Process	$N_{ m bjets}=0$	$N_{ m bjets}=1$	$N_{ m bjets} \geq 2$	
WZ	$1.88 \pm 0.16 \pm 0.38$	$1.48 \pm 0.15 \pm 0.30$	$0.82 \pm 0.12 \pm 0.16$	
ttX	$0.06 \pm 0.02 {\pm} 0.01$	$0.40 \pm 0.07 \pm 0.10$	$0.78 \pm 0.08 \pm 0.19$	
Non-prompt	$1.56 \pm 0.62 {\pm} 0.47$	$1.26 \pm 0.85 \pm 0.38$	$0.72 \pm 0.53 \pm 0.22$	
Rare	$0.78 \pm 0.24 {\pm} 0.39$	$0.33 \pm 0.03 \pm 0.16$	$0.16 \pm 0.02 {\pm} 0.08$	
Background	$4.27 \pm 0.69 {\pm} 0.72$	$3.46 \pm 0.87 {\pm} 0.52$	$2.48 \pm 0.55 {\pm} 0.34$	
ttZ	$0.59\pm0.10{\pm}0.10$	$2.29 \pm 0.22 \pm 0.23$	$5.58 \pm 0.32 \pm 0.45$	
Predicted	$4.87 \pm 0.69 {\pm} 0.72$	$5.74 \pm 0.89 {\pm} 0.57$	$8.06 \pm 0.64 {\pm} 0.57$	
Data	4	9	10	

	$N_{ m jets} \geq 2$			
Process	$N_{ m bjets}=0$	$N_{ m bjets} \geq 1$		
ZZ	$0.68 \pm 0.03 \pm 0.15$	$0.27 \pm 0.01 \pm 0.06$		
ttX	$0.01 \pm 0.01 \pm 0.01$	$0.10\pm0.03\pm0.03$		
Rare	$0.18 \pm 0.02 \pm 0.09$	$0.07 \pm 0.01 \pm 0.04$		
Background	$0.87 \pm 0.04 \pm 0.17$	$0.44 \pm 0.03 \pm 0.08$		
ttZ	$0.29 \pm 0.06 \pm 0.04$	$1.02 \pm 0.13 \pm 0.08$		
Predicted	$1.16 \pm 0.07 \pm 0.17$	$1.46 \pm 0.13 \pm 0.13$		
Data	2	1		

Channel	Expected significance	Observed significance
3ℓ analysis	2.9	3.5
4 ℓ analysis	1.2	0.9
3ℓ and 4ℓ combined	3.1	3.6

Results: CMS-TOP-16-009 ttZ 3 ℓ and 4 ℓ

• $\sigma_{\rm measured}(t\bar{t}Z) = 1.07^{+0.35}_{-0.31}(\text{stat.}) \, {}^{+0.17}_{-0.14}(\text{sys.}) \, \text{pb}$

• $\sigma_{\text{theoretical}}(t\bar{t}Z) = 0.84^{+0.08}_{-0.09}(\text{scale}) \stackrel{+0.03}{_{-0.03}}(pdf) \stackrel{+0.03}{_{-0.03}}(\alpha_s) \text{ pb (NLO in QCD and EW)}$

• Combined significance: 3.1 expected and 3.6 observed

Results: TOP-16-017, same-sign dilepton channel

	SS 2L, 0 < BDT < 0.6, minus-minus				
Process	2 jets	3 jets 1 bjet	$3 \text{ jets} \ge 2 \text{ bjets}$	\geq 4 jets 1 bjet	\geq 4 jets \geq 2 bjets
total background	5.39 ± 1.14	3.42 ± 0.81	3.57 ± 0.88	2.20 ± 1.02	7.21 ± 1.86
ttW	0.70 ± 0.09	0.61 ± 0.08	1.12 ± 0.14	0.71 ± 0.09	1.97 ± 0.24
total	6.08 ± 1.15	4.03 ± 0.81	4.69 ± 0.90	2.91 ± 1.03	9.18 ± 1.88
observed	9	7	5	5	9
U					
		SS	2L, 0.6 < BDT,	minus-minus	
Process	2 jets	SS 3 jets 1 bjet	2L, 0.6 < BDT, 1 3 jets ≥ 2 bjets	minus-minus \geq 4 jets 1 bjet	\geq 4 jets \geq 2 bjets
Process total background	2 jets 1.00 ± 0.25	$\begin{array}{c} \text{SS}\\ 3 \text{ jets } 1 \text{ bjet}\\ 0.82 \pm 0.19 \end{array}$	2L, 0.6 < BDT, 13 3 jets ≥ 2 bjets 1.70 ± 0.39	$\begin{array}{l} \mbox{minus-minus} \\ \geq \mbox{ 4 jets 1 bjet} \\ 1.04 \pm 0.32 \end{array}$	\geq 4 jets \geq 2 bjets 6.05 \pm 1.05
Process total background ttW	$\begin{array}{c} 2 \text{ jets} \\ 1.00 \pm 0.25 \\ 0.32 \pm 0.04 \end{array}$	$ \begin{array}{c} \text{SS} \\ 3 \text{ jets 1 bjet} \\ 0.82 \pm 0.19 \\ 0.32 \pm 0.04 \end{array} $	$\begin{array}{c} \text{2L, } 0.6 < \text{BDT, } \\ 3 \text{ jets} \geq 2 \text{ bjets} \\ 1.70 \pm 0.39 \\ 0.90 \pm 0.11 \end{array}$		$ \geq 4 \text{ jets} \geq 2 \text{ bjets} \\ \hline 6.05 \pm 1.05 \\ 2.51 \pm 0.30 $
Process total background ttW total	$\begin{array}{c} 2 \text{ jets} \\ 1.00 \pm 0.25 \\ 0.32 \pm 0.04 \\ 1.33 \pm 0.26 \end{array}$		$\begin{array}{c} \mbox{2L, } 0.6 < \mbox{BDT, } \\ \mbox{3 jets} \geq 2 \mbox{ bjets} \\ \mbox{1.70} \pm 0.39 \\ \mbox{0.90} \pm 0.11 \\ \mbox{2.59} \pm 0.40 \end{array}$		$ \begin{tabular}{ c c c c c } \geq 4 & jets \geq 2 & bjets \\ \hline 6.05 \pm 1.05 \\ 2.51 \pm 0.30 \\ \hline 8.55 \pm 1.09 \end{tabular} \end{tabular} \end{tabular} $

Results: TOP-16-017, same-sign dilepton channel

	SS 2L, 0 < BDT < 0.6, plus-plus				
Process	2 jets	3 jets 1 bjet	3 jets \geq 2 bjets	4 jets 1 bjet	\geq 4 jets \geq 2 bjets
total background	5.02 ± 1.14	1.83 ± 1.47	3.88 ± 0.89	4.57 ± 1.71	9.86 ± 2.15
ttW	1.33 ± 0.16	1.12 ± 0.14	1.99 ± 0.24	1.29 ± 0.16	$\textbf{3.56} \pm \textbf{0.43}$
total	$\begin{array}{ } \textbf{6.35} \pm \textbf{1.15} \end{array}$	2.94 ± 1.48	5.87 ± 0.92	5.85 ± 1.72	13.42 ± 2.19
observed	7	4	5	5	5
	SS 2L, 0.6 < BDT, plus-plus				
Process	2 jets	3 jets 1 bjet	3 jets \geq 2 bjets	\geq 4 jets 1 bjet	\geq 4 jets \geq 2 bjets
total background	1.50 ± 0.37	0.98 ± 0.30	1.49 ± 0.44	$\textbf{0.84} \pm \textbf{0.24}$	5.72 ± 1.05
ttW	0.74 ± 0.09	0.63 ± 0.08	1.74 ± 0.21	$\textbf{0.86} \pm \textbf{0.11}$	4.56 ± 0.55
total	2.24 ± 0.38	1.61 ± 0.32	3.22 ± 0.49	1.70 ± 0.27	10.29 ± 1.18
observed	2	3	7	3	14

Results: TOP-16-017, three-lepton channel

	3L, 2 jets		
Process	0 bjet	1 bjet	\geq 2 bjet
Background	333.30 ± 55.56	49.60 ± 8.36	4.54 ± 1.19
ttZ	5.74 ± 0.83	8.26 ± 1.15	2.18 ± 0.33
Predicted	339.04 ± 55.57	57.85 ± 8.44	6.72 ± 1.23
Data	358	78	6
	3L, 3 jets		
Process	=0 bjet	=1 bjet	\geq 2 bjet
Background	95.36 ± 17.08	20.70 ± 3.68	3.90 ± 0.91
ttZ	6.26 ± 0.93	13.03 ± 1.78	6.66 ± 1.00
Predicted	101.62 ± 17.10	33.73 ± 4.09	10.55 ± 1.35
Data	109	41	8
	$3L, \ge 4$ jets		
Process	0 bjet	1 bjet	\geq 2 bjet
Background	34.72 ± 6.48	9.85 ± 1.78	3.70 ± 0.82
ttZ	5.95 ± 0.92	15.50 ± 2.15	12.03 ± 1.80
Predicted	40.67 ± 6.54	25.35 ± 2.79	15.73 ± 1.98
Data	F7	20	11

Illia Khvastunov

September 21, 2016 13

Results: TOP-16-017, four-lepton channel

	4L, \geq 2 jets		
Process	0 bjet	\geq 1 bjet	
Background	6.10 ± 1.27	1.67 ± 0.81	
ttZ	1.27 ± 0.17	5.83 ± 0.73	
Predicted	7.37 ± 1.28	7.50 ± 1.09	
Observed	6	10	

