Searches for New Resonances Decaying to Top Quarks

Kenneth Johns University of Arizona 🕂 On Behalf of the ATLAS and CMS Collaborations

TOP2016 Olomouc, Czech Republic September 19-23, 2016

Outline

> Two sets of searches will be presented

- Neutral gauge bosons $Z' \rightarrow t\bar{t}$
- Charged gauge bosons $W' \rightarrow tb$

Common elements of these searches include

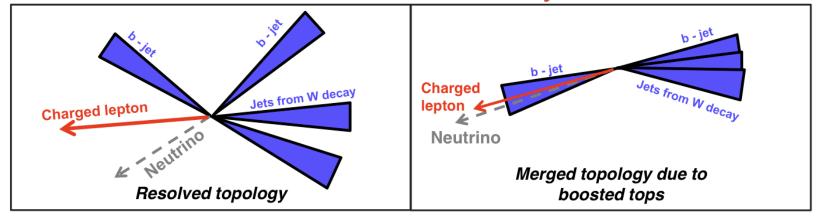
- Their existence is predicted by various Beyond the Standard Model (BSM) theories
- The assumption that the new particles decay predominantly into top quarks or top quark pairs
- Most of the presented results use 2-13 fb⁻¹ of 13 TeV data collected in 2015/16

Searches for $t\overline{t}$ Resonances

Some BSM theories predict new heavy bosons that decay preferentially into tt pairs

Spin 0 color singlet (H/A in 2-Higgs-Doublet Model (2HDM))

- Branco, Ferreira et al., NP B690 (2004) 81
- Spin 1 color singlet (topcolor leptophobic Z')
 - Harris and Jain, EPJC 72 (2012) 2072
- Spin 1 color octet (Kaluza-Klein (KK) excitations of gluon)
 - Lille, Randall and Wang, JHEP 09 (2007) 074


Spin 2 color singlet (KK excitation of the graviton)

- Agashe, Davoudiasl, Perez and Soni, PRD (2007) 036006
- Fitzpatrick, Kaplan, Randall and Wang, JHEP 09 (2007) 013

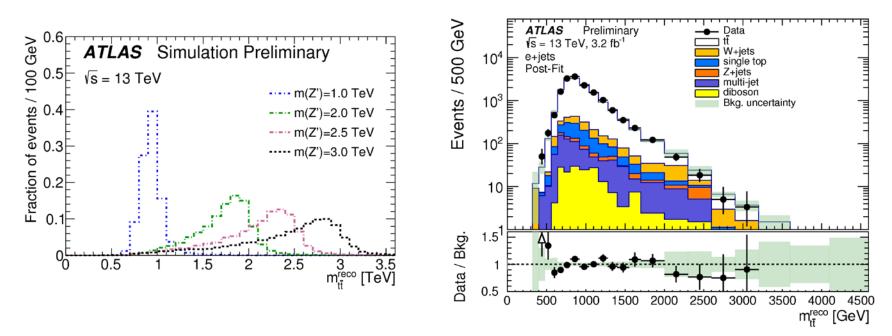
Searches for tt Resonances

- Two different decay topologies can be exploited in the lepton plus jets decay channel
- Resolved (low mass)
 - At least four well separated small-radius jets
 - Well isolated lepton

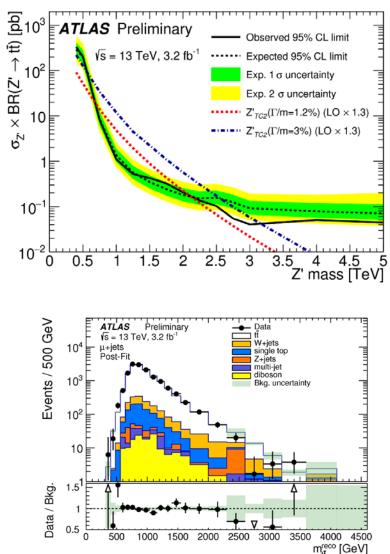
- Boosted (high mass)
 - One large-radius jet with and m_{jet} ~ m_t and substructure selection
 - Lepton close to/inside the b-jet

Searches for tt Resonances (Lepton + Jets) at ATLAS

Experimental signature in the boosted decay channel is a top-tagged, large-radius jet and a high p_T lepton with nearby small-radius jet and missing E_T


Event selection includes

- \geq 1 anti-kt R=1.0 (AK10) jets with p_T > 300 GeV that has been trimmed and top-tagged using N-subjettiness ratio τ_{32} and jet mass criteria (80% efficient WP)
- Exactly one electron (muon) with p_T > 30 (25) GeV and isolated using a requirement on the surrounding track p_T
- One AK4 jet with $p_T > 25$ GeV and $\Delta R(jet, lep) < 1.5$
- ≥ 1 b-tagged track jet (70% efficient WP)
- $E_T^{miss} > 20 \text{ GeV} \text{ and } E_T^{miss} + m_T^W > 60 \text{ GeV}$

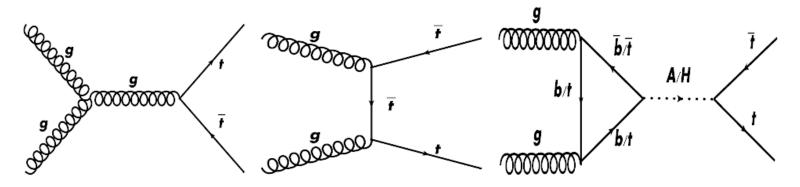

Searches for tt Resonances (Lepton + Jets) at ATLAS

 $\succ m_{t\bar{t}}^{reco}$ is reconstructed from the semileptonic top candidate and hadronic top candidate

Backgrounds are determined from MC simulation and datadriven methods

Searches for tt Resonances (lepton + jets) at ATLAS

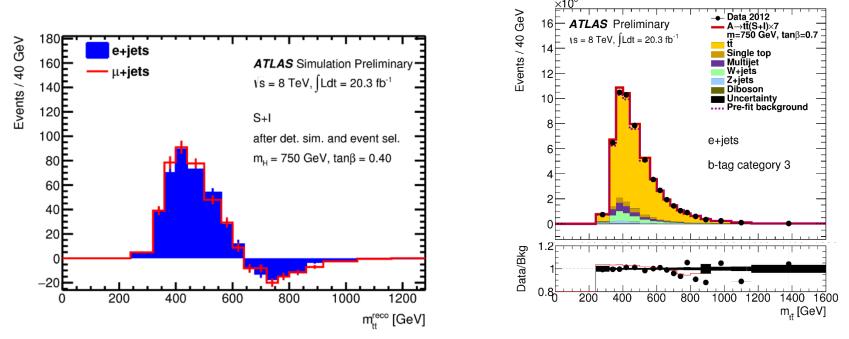
Kenneth Johns, University of Arizona


- ➤ The m_{tt̄} distributions in the two signal regions (e/µ) are used in a profile likelihood ratio method
- 95% CL exclusion limits are set excluding

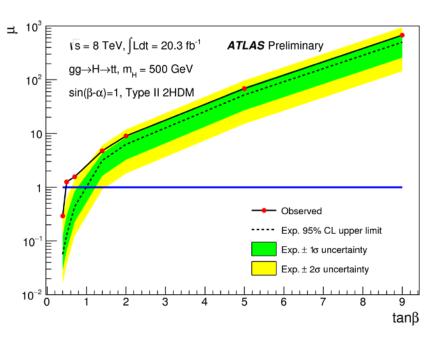
 $0.7 < m_{Z'} < 2.0 \text{ TeV} (1.2\% \text{ width})$ $0.7 < m_{Z'} < 3.2 \text{ TeV} (3\% \text{ width})$

ATLAS-CONF-2016-014

Search for Scalar tt Resonances (Lepton + Jets) at ATLAS


A re-interpretation of the 8 TeV resonance search result using 20.3 fb⁻¹ of data

- Analysis targets resonance masses between 400 and 800 GeV
 - Hence only data satisfying the resolved topology reconstruction are used (independent of boosted topology)
 - Same selection criteria and mass reconstruction algorithm are used as for the resolved topology result


Search for Scalar tt Resonances (Lepton + Jets) at ATLAS

- ➤ MadGraph5_aMC@NLO is modified to generate only pure A/H signal (S) plus interference (I) events for $m_{A/H} = 500$ and 750 GeV at a few low tan β values
 - Difference between this approach and an approach where Background (B) MC samples are subtracted from S + I + B samples is taken as a systematic uncertainty for the signal

Search for Scalar tt Resonances (Lepton + Jets) at ATLAS

→ Limits are set by utilizing six signal regions and parameterizing $m_{t\bar{t}}^{reco}$ as $\mu S + \sqrt{\mu}I + B$

95% confidence levels are set on μ for a pure type-II
2HDM model and exclude

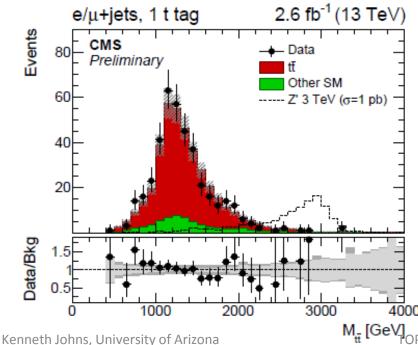
 $\tan \beta < 0.85$ for 500 GeV A $\tan \beta < 0.45$ for 500 GeV H No values of $\tan \beta$ are excluded for a mass of 750 GeV

ATLAS-CONF-2016-073

Search for tt Resonances (Lepton + Jets) at CMS

Optimized for high mass (> 1 TeV) resonances

Event selection includes


- Optionally one AK8 jet that has been top-tagged using criteria on $M_{soft-drop}$ and τ_{32} (3% mistag WP)
- \geq 2 AK4 jets with leading p_T > 250 (150) GeV in the electron (muon) channel
- Exactly one electron or muon with $p_T > 50$ GeV and isolated using $\Delta R(lep, jet) > 0.4$ or $p_T^{rel}(lep, jet) > 20$ GeV
- ≥ 0 b-tagged AK4 jets (65% efficient WP)
- $E_T^{miss}(H_T^{lep}) > 120 (150)$ GeV in the electron (muon) channel

•
$$\chi^2 = \left(\frac{M_{lep} - \overline{M}_{lep}}{\sigma_{M_{lep}}}\right)^2 + \left(\frac{M_{had} - \overline{M}_{had}}{\sigma_{M_{had}}}\right)^2 < 30$$

Kenneth Johns, University of Arizona

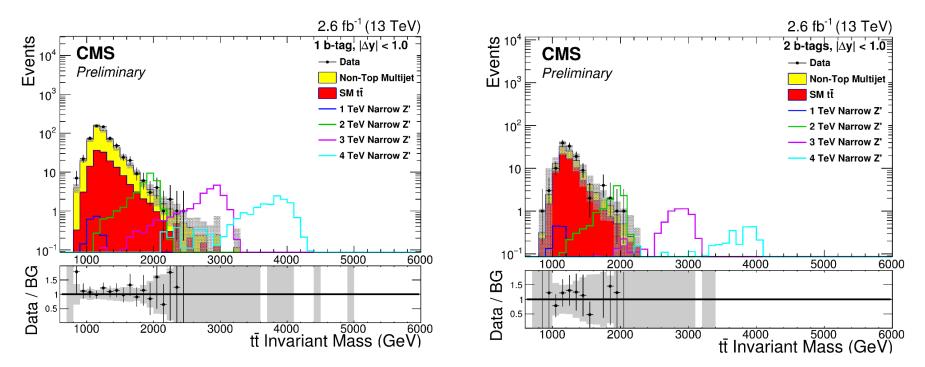
Searches for tt Resonances (Lepton+Jets) at CMS

- > 6 signal regions (e/μ x (1 t-tag or 0 t-tag, 1 b-tag or 0 ttag, 0 b-tag)) are used in limit setting
- Simultaneous background-only fit is carried out in the signal region and three control regions ($t\bar{t}, W + jets, Z + jets$) to estimate background contributions

> 95% CL Bayesian limits are set excluding $0.6 < m_Z, < 2.3 \text{ TeV} (1\% \text{ width})$ $0.5 < m_Z, < 3.4 \text{ TeV} (10\% \text{ width})$ $0.5 < m_Z, < 4.0 \text{ TeV} (30\% \text{ width})$ $0.5 < m_{g_{KK}} < 2.9 \text{ TeV}$

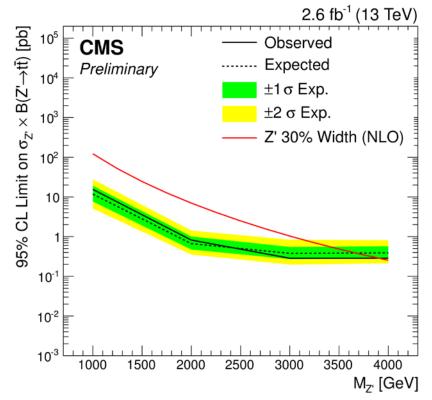
```
CMS-PAS-B2G-15-002
```

Searches for tt Resonances (All-hadronic) at CMS


- Focuses on high mass tt resonances by identifying two boosted top quark decays as two large-radius jets that are top-tagged
- Event selection includes
 - Two AK8 jets with $p_T > 400$ GeV and $|\Delta \phi| > 2.1$ that are top-tagged using $M_{soft\ drop}$ and τ_{32} criteria (3% mistag WP)
 - Optionally, at least 1 b-tagged subjet within a top-tagged jet (1% mistag WP)
 - H_T > 1000 GeV

Six signal regions are used in the search: 3 b-tag conditions x 2 $\Delta y(jet_1, jet_2)$ regions

Kenneth Johns, University of Arizona


Searches for tT Resonances (All-hadronic) at CMS

- > SM $t\bar{t}$ background shape is taken from MC simulation and normalization from theory
- QCD multijet background is estimated using a data-driven anti-t-tag and probe method to measure t-tag mistag rates

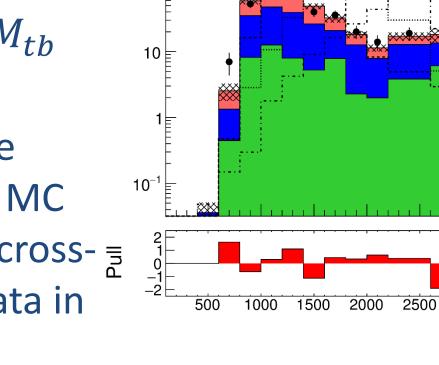
Searches for tT Resonances (All-hadronic) at CMS

Template-based shape analysis is performed using the m_{tt̄} distributions with binned likelihood method with Bayesian statistics

95% CL limits are set excluding

 $\begin{array}{l} 1.4 < m_{Z^{\prime}} < 1.6 \; {\rm TeV} \, (1\% \; {\rm width}) \\ 1.0 < m_{Z^{\prime}} < 3.3 \; {\rm TeV} \, (10\% \; {\rm width}) \\ 1.0 < m_{Z^{\prime}} < 3.8 \; {\rm TeV} \, (30\% \; {\rm width}) \\ 1.0 < m_{g_{KK}} < 2.4 \; {\rm TeV} \end{array}$

CMS-PAS-B2G-15-003


- Signature is a high p_T lepton, significant E_T^{miss} and two high-p_T b-jets
- Event selection includes
 - Exactly one lepton with p_T > 180 GeV
 - $\Delta R(lep, jet) > 0.4$ or $p_T^{rel}(lep, jet) > 60$ (50) GeV for e (μ) channel
 - \geq 2 high p_T AK4 jets (leading jet p_T > 350 (450) GeV)
 - \geq 1 b-tagged high p_T jets

Top quark jet is reconstructed from the W and one of the two leading jets. The W' mass is reconstructed from the top jet and b jet

10³

 10^{2}

Search is carried out in 4 regions (e/μ x Events / bin 1,2 *b-jets*) using the reconstructed invariant mass M_{tb} \succ W+jet and $t\bar{t}$ backgrounds are estimated from MC simulation and cross-

CMS Preliminary

e+jets N

checked with data in control regions

4000

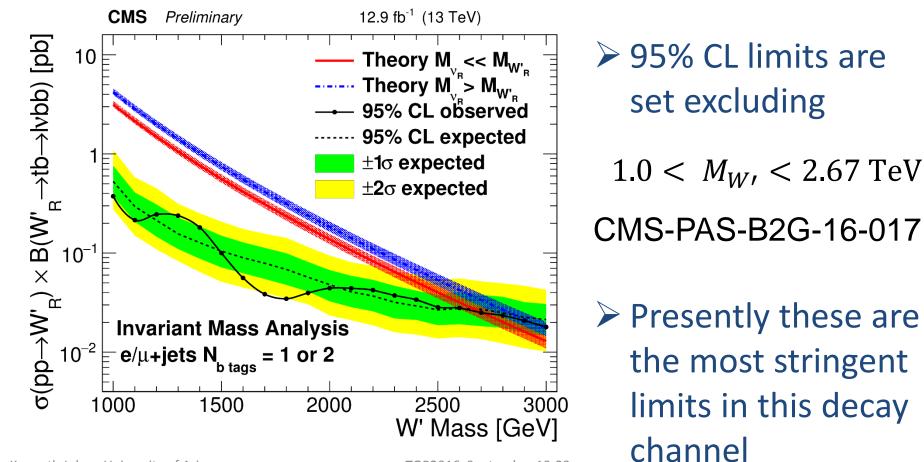
M(tb)

12.9 fb⁻¹ (13 TeV)

 $W \rightarrow Iv$ (LF) + Z/ $\gamma^* \rightarrow I^*I^-$ + VV

W'_B, m=2.0 TeV × 20

-... - W',, m=2.5 TeV × 20


3000

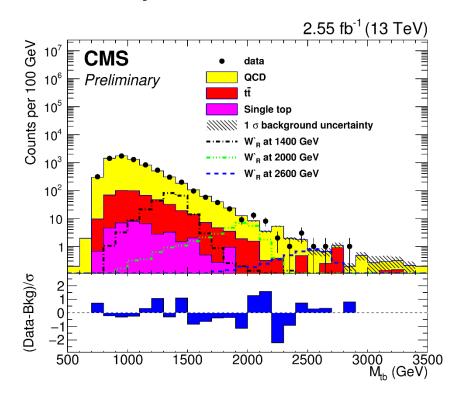
3500

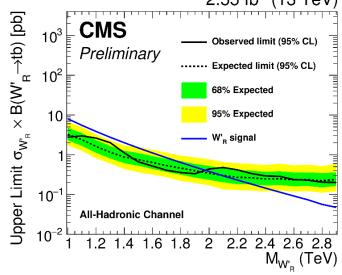
Data

₩ →Iv (HF) tī + Single-Top - - - W'_¤, m=1.5 TeV × 20

\succ Limits are set using the M_{tb} distribution in a binned likelihood fit with Bayesian statistics

Search for $W'_R \rightarrow tb$ (Hadronic) at CMS


- Signature is a top-tagged large-radius jet recoiling against a high p_T b-jet
- Event selection includes
 - One AK8 jet with p_T > 350 GeV and top-tagged (3% mistag WP)
 - Additionally, at least one subjet must be b-tagged
 - One AK8 jet with $p_T > 350$ GeV, b-tagged with a loose (10% mistag) WP and $M_{soft-drop} < 70$ GeV


•
$$|\Delta \varphi(jet_1, jet_2)| > \frac{\pi}{2}$$

• $|\Delta y(jet_1, jet_2)| < 1.3$

Search for $W'_R \rightarrow tb$ (Hadronic) at CMS

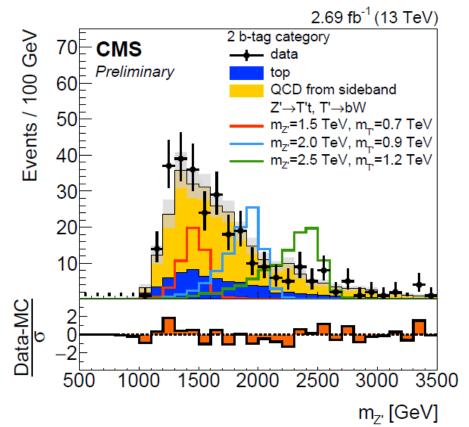
Limit setting is carried out with the M_{tb} distribution in a binned likelihood fit using Bayesian statistics

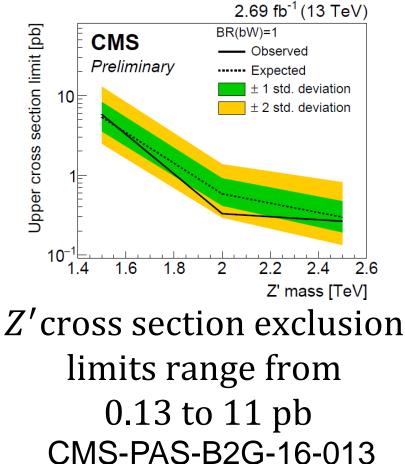
 $m_{W_R'} < 2.0$ TeV is excluded in this first measurement at $\sqrt{s} = 13$ TeV CMS-PAS-B2G-16-009

Search for $Z' \rightarrow Tt$ at CMS

- Some models predicting heavy Z' bosons also include a fourth generation of Vector-like Quarks (VLQ's)
 - $T' \rightarrow Ht, Zt, Wb$ are dominant decay modes in some models
- This analysis searches for $Z' \rightarrow T't \rightarrow Wbt$ where the W and t decay hadronically
 - Experimental signature is a boosted W jet, a boosted top jet and a b jet
 - Composite Higgs effective model is used as a benchmark

Search for $Z' \rightarrow Tt$ at CMS


Event selection includes


- One AK8 jet with $p_T > 400$ GeV that is top-tagged using soft-drop mass and τ_{32} criteria
 - Optionally b-tagged subjets are identified
- One AK8 jet with $p_T > 200$ GeV that is W-tagged using soft-drop mass and τ_{21} criteria
- One AK4 jet with p_T > 100 GeV that is b-tagged with a medium WP
 - $\Delta R > 0.8$ separation between the AK4 jets and AK8 jets

Z' is defined using the 4-vector sum of the three jets

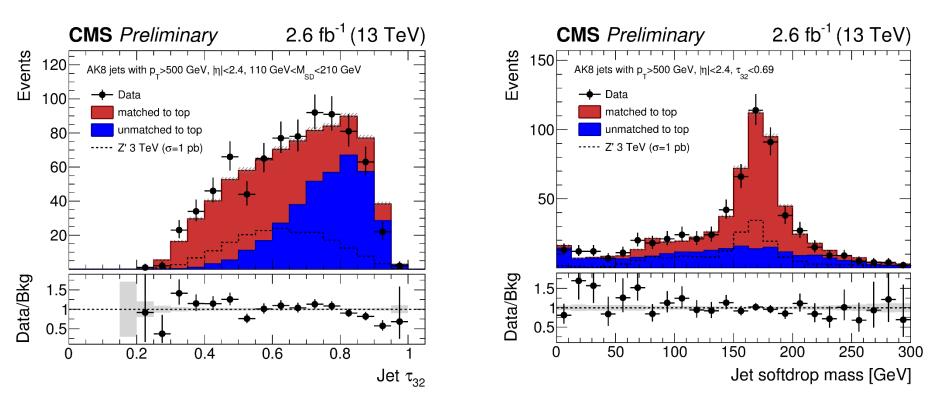
Search for $Z' \rightarrow Tt$ at CMS

Z' invariant mass is in limit-setting and the dominant QCD multijet background is estimated using datadriven methods

Conclusions

Results of ATLAS and CMS searches for Z' and W' that decay into top quarks were presented

• New is a search for $Z' \rightarrow Tt$ where T is a VLQ

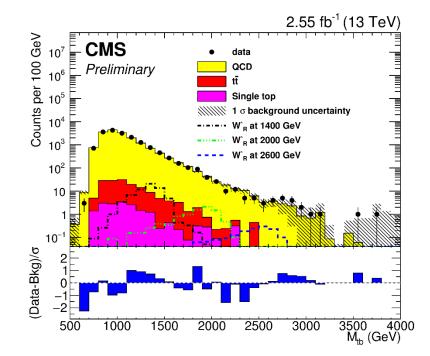

> No evidence was found for exotic physics

- The exclusion limits set are already competitive with or exceed Run 1 limits
- > A search for scalar $t\bar{t}$ resonances at $\sqrt{s} = 8$ TeV was also shown
- We eagerly look forward to updated results for resonances decaying into top quarks using the full 2015-2016 data set

Backup Slides

Searches for tt Resonances (Lepton+Jets) at CMS

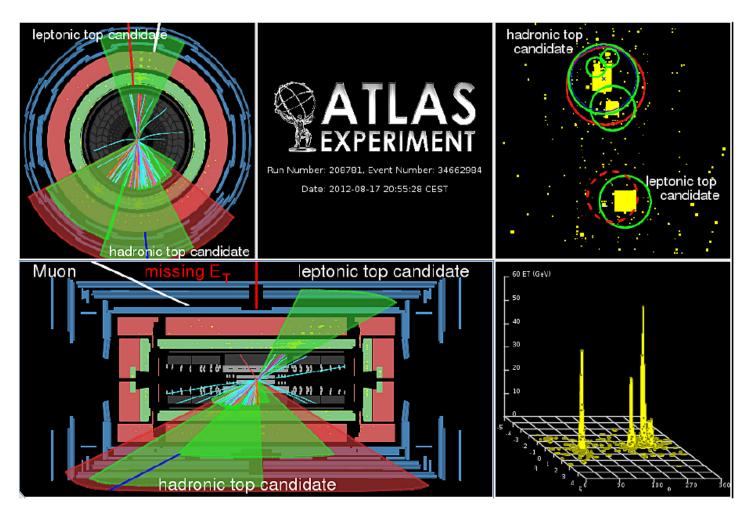
> Top tagger utilizes τ_{32} and $M_{soft drop}$ with a 50% efficiency and 3% mistag WP



- Signature is a high p_T lepton, significant E_T^{miss} and two high-p_T b-jets
- Event selection includes
 - Exactly one lepton with p_T > 180 GeV
 - $\Delta R(lep, jet) > 0.4$ or $p_T^{rel}(lep, jet) > 60$ (50) GeV for e (μ) channel
 - \geq 2 high p_T AK4 jets (leading jet p_T > 350 (450) GeV)
 - \geq 1 b-tagged high p_T jets
 - $E_T^{miss} > 120 (50) \text{ GeV for e } (\mu) \text{ channel}$

• $p_T^{top}(reco) > 250 \text{ GeV}$ and $p_T^{jet_1+jet_2} > 350 \text{ GeV}$

Search for $W'_R \rightarrow tb$ (Hadronic) at CMS


- Primary sources of background are SM QCD multi-jet and tt production
- A data-driven method is used to estimate the QCD multi-jet contribution and cross-checked in appropriate control regions

Control region with the subjet b-tag requirement inverted

Searches for tt Resonances

$> m(t\bar{t}) = 2.5 \text{ TeV candidate event}$

