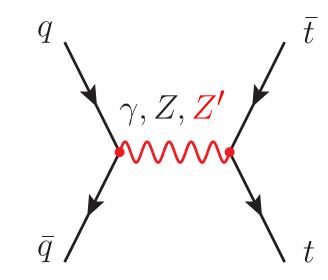


Profiling Z' bosons with top pair asymmetries

D. Millar in collaboration with L. Cerrito, S. Moretti and F. Spanò

Southampton


arXiv:1609.05540

1. Introduction

- New fundamental, massive, neutral, spin-1 gauge bosons (Z') are ubiquitous in BSM.
- E.g. due to residual gauge symmetries after the spontaneous symmetry breaking of a GUT:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$
.

 $ightharpoonup Z'
ightarrow tar{t}$ search alternative to $Z'
ightarrow I^+I^-$.

- ightharpoonup Z't coupling significant in many BSM.
- ► E.g. Composite Higgs Models.

4. Charge asymmetry

- Top quarks decay prior to hadronisation.
- Spin info transmitted to decay products.
- Can define unique Asymmetry Observables.

► Forward-backward Asymmetry is defined

$$A_{FB} = \frac{N_t(\cos\theta > 0) - N_t(\cos\theta < 0)}{N_t(\cos\theta > 0) + N_t(\cos\theta < 0)}.$$

▶ Unique couplings to Z':

$$A_{FB} \propto q_V q_A t_V t_A$$
.

- pp collisions have no preferred z direction.
- ▶ But, parton momentum fraction: $X_q > X_{\bar{q}}$.
- Use the boost direction to define the z axis.

$$\cos \theta^* = \frac{y_{tt}}{|y_{tt}|} \cos \theta \implies A_{FB}^*.$$

2. Models

► Generalised Sequential Models (GSMs):

$$Q_{GSM} = \cos \alpha T_I^3 + \sin \alpha Q,$$

► General Left-Right (GLR) symmetric models:

$$SU(2)_L \times SU(2)_R \times U(1)_{B-L},$$

 $\rightarrow SU(2)_L \times U(1)_R \times U(1)_{B-L},$
 $\rightarrow SU(2)_L \times U(1)_Y.$

$$Q_{GLR} = \cos \phi T_R^3 + \sin \phi T_{B-L}.$$

► E₆ inspired models:

$$\begin{split} \mathsf{E}_6 &\to \mathsf{SO}(10) \times \mathsf{U}(1) \psi, \\ \mathsf{SO}(10) &\to \mathsf{SU}(5) \times \mathsf{U}(1)_\chi, \\ \mathsf{SU}(5) &\to \mathsf{SU}(3)_\mathcal{C} \times \mathsf{SU}(2)_\mathcal{L} \times \mathcal{U}(1)_\mathcal{Y}. \end{split}$$

$$Q_{E_6} = \cos \theta T_{\chi} + \sin \theta T_{\psi}.$$

3. Calculation

- Residual U(1)' gauge symmetry is broken around the TeV scale: massive Z' boson.
- ► Additional low-energy Lagrangian neutral term:

$$\mathcal{L} \supset g' Z'_{\mu} \bar{\psi} \gamma^{\mu} (f_V - f_A \gamma_5) \psi = g' Z'_{\mu} \bar{\psi} \gamma^{\mu} Q_{Z'} \psi.$$

ightharpoonup The cross section demonstrates Z' coupling:

$$\sigma \propto \left(q_V^2 + q_A^2\right) \left((4 - \beta^2)t_V^2 + t_A^2\right),$$

where
$$\beta = \sqrt{1 - 4m_t^2/\hat{s}}$$
.

► Generate the parton-level 6 fermion final state.

Include full tree-level SM $t\bar{t}$ interference, with all intermediate particles allowed off-shell.

5. Polarisation asymmetry

► Top polarisation Asymmetry is defined

$$A_{L} = \frac{N(+,+) + N(+,-) - N(-,+) - N(-,-)}{N(+,+) + N(+,-) + N(-,+) + N(-,-)}.$$

▶ Unique couplings to Z':

$$A_L \propto (q_V^2 + q_A^2) t_V t_A$$
.

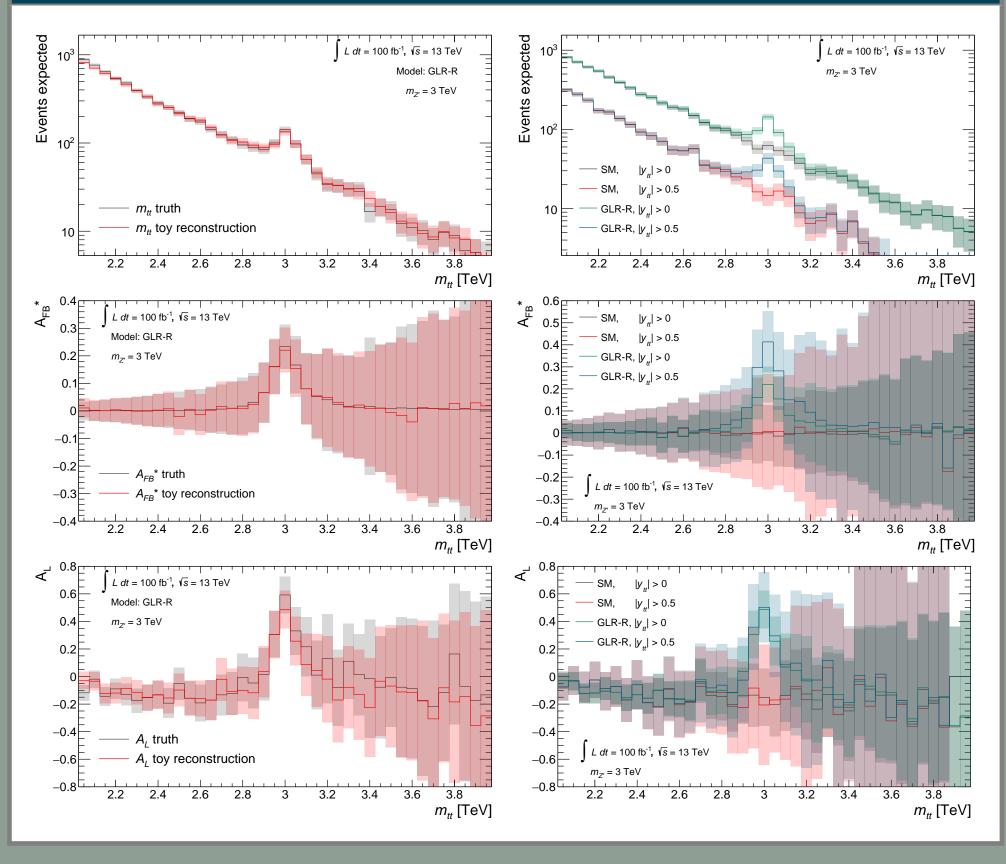
- $ightharpoonup heta_f$: angle between the $m {f p}_t$ in the partonic rest frame and $m {f p}_f$ in the top rest frame.
- Top quark polarization information preserved:

$$\frac{2}{\Gamma_f} \frac{d\Gamma_f}{d\cos\theta_f} = 1 + A_L \cos\theta_f$$

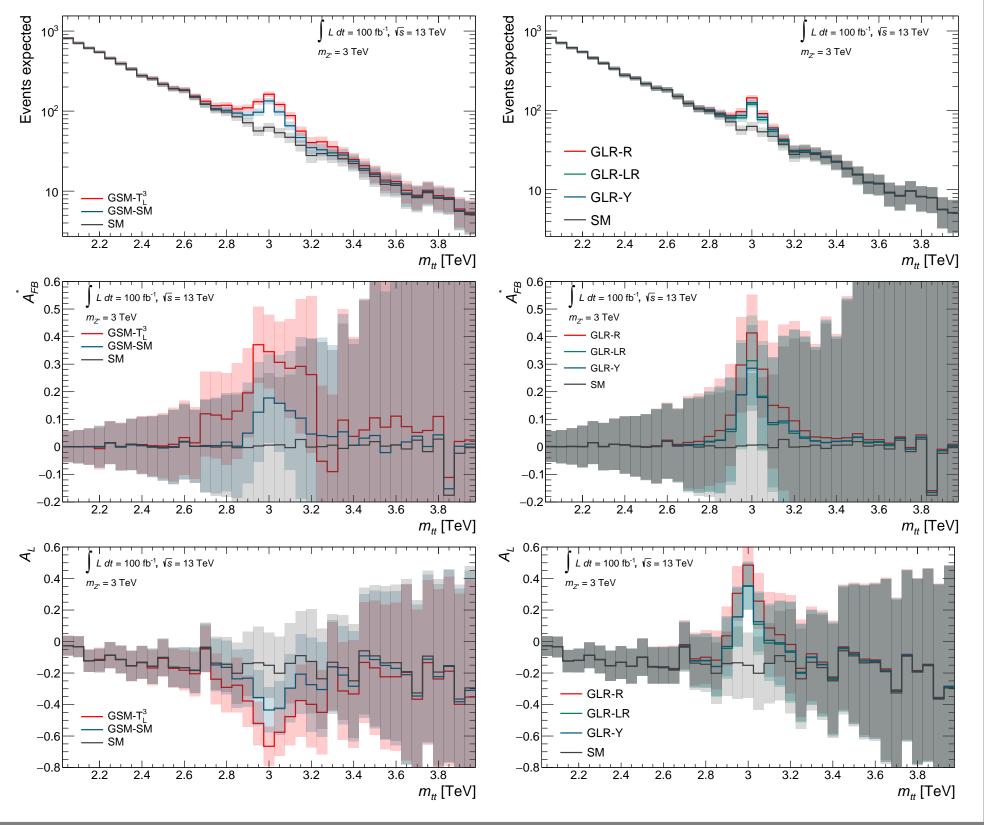
6. Toy reconstruction of l + j

- Parton level, but mimic specific experimental constraints in lepton + jets final state.
- Reconstruct p_z^{ν} in presence of E_T^{miss} :

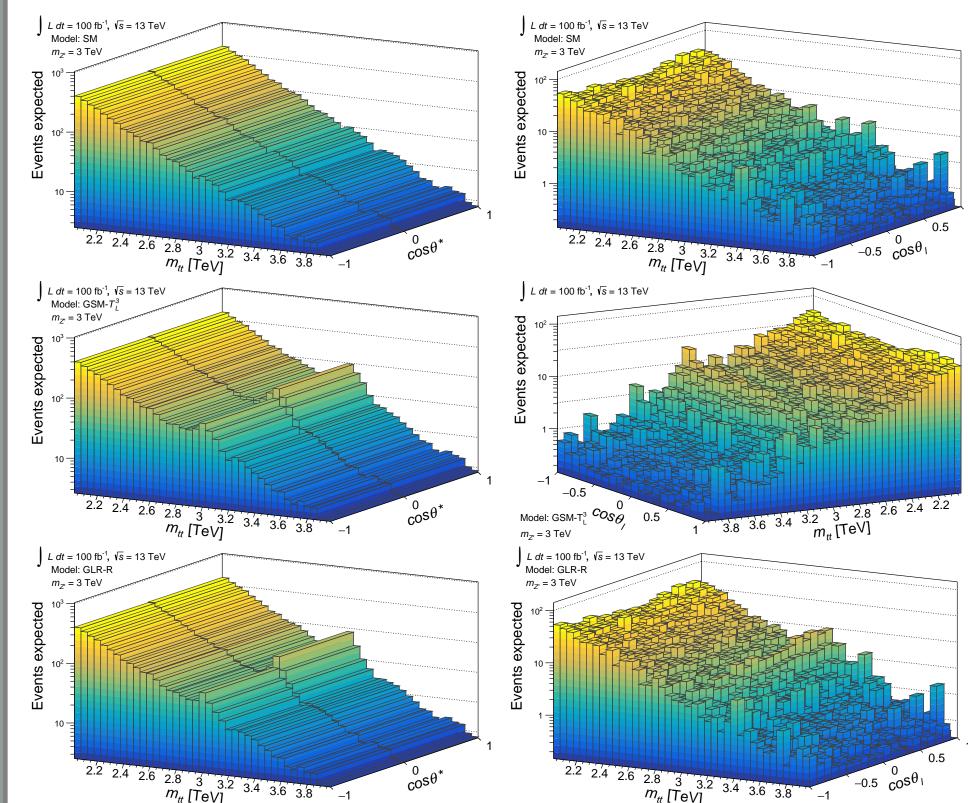
$$p_T^{l^2} p_Z^{\nu^2} - 2k p_Z^l p_Z^{\nu} + p_T^{\nu^2} |p^l|^2 - k^2 = 0,$$


where

$$k = \frac{m_W^2}{2} + \mathbf{p}_T^I \mathbf{p}_T^{\nu}.$$


- ► Resolve ambiguity in jet-top assignment.
- Select the combination for reconstruction by minimising:

$$\chi^{2} = \left(\frac{m_{bl\nu} - m_{t}}{\Gamma_{t}}\right)^{2} + \left(\frac{m_{bqq} - m_{t}}{\Gamma_{t}}\right)^{2}.$$


7. Reconstruction and cuts

8. Distinguishing Z' models

9. Complementary discovery

10. Expected significance

Construct profile likelihood ratio from

$$L(\mathbf{x}|\mu,\theta) = \prod_{i} e^{(\mu s_i + b_i)} \frac{(\mu s_i + b_i)^{n_i}}{n_i!}.$$

- Statistic for test of $\mu = 0$, assuming $\mu = 1$.
- Determine using asymptotic formulae.
 General enough for *n*-dimensional histograms.
- U(1)'Significance (Z) $m_{tt} \ \& \ \cos heta^*$ $m_{tt} \& \cos \theta_{I}$ m_{tt} 8.5 8.6 $U(1)_R$ $U(1)_{LR}$ 5.1 5.6 5.8 $U(1)_{Y}$ 6.3 6.8 7.0 $U(1)_{T_{I}^{3}}$ 12.1 13.0 14.0 7.3 7.6 $U(1)_{SM}$

11. Conclusions

- We characterise the sensitivity of the LHC to a variety of benchmark models for $Z' \to t \bar t$.
- A combination of the cross section, A_{FB} and A_L can be used to distinguish between different classes of Z' models.
- These asymmetries also consistently increase the significance of Z' observation, demonstrating their potential as complementary discovery channels.
- \blacktriangleright E_6 inspired models universally feature negligible A_{FB}^* and A_L in $Z' \to t \bar t$.
- The top polarisation asymmetry demonstrates particularly promising distinguishing power, and boosts to significance.
- $ightharpoonup A_{FB}^*$ and A_L survive a simplified reconstruction.

12. Future work

- Investigate other angular variables, focusing on dilepton $t\bar{t}$ events: $\Delta\phi_I$, $\cos\theta_I$, $\cos\theta_{I^+}\cos\theta_{I^-}$.
- Extend to include parton-shower, fragmentation/hadronisation, heavy flavour decay and detector reconstruction.
- Perform an appropriate boosted reconstruction that preserves high signal efficiency with increasing momentum and maintains control over associated systematic uncertainties.
- Investigate models featuring multiple interfering Z': Composite Higgs, Extra-Dimensions.
- These models may feature generationally non-universal couplings to Z's, therefore, $Z' \rightarrow t\bar{t}$ can be the dominant discovery mode.