

HL-LHC and FCC: what are the cryogenic needs?

Laurent Tavian, CERN

European Cryogenics Days, 9-10 June 2016

Contents

- Introduction of cryogenics at CERN
- High-Luminosity LHC (HL-LHC) upgrade
- Future Circular Collider (FCC) cryogenics study
 FCC-hh → hadron-hadron collider
 - FCC-ee → electron-positron collider (not treated today but back-up slides available at the end of this presentation)

Installed cryogenic power at CERN

The CERN Flagship: The Large Hadron Collider (LHC)

LHC accelerator (24 km of superconducting magnets operating at 1.9 K)

ATLAS detector

CMS detector

- Introduction of cryogenics at CERN
- High-Luminosity LHC (HL-LHC) upgrade
- Future Circular Collider (FCC) cryogenics study

The HL-LHC (HiLumi) project Objectives and contents

- Determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:
 - enable a total integrated luminosity of 3000 fb⁻¹
 - enable an integrated luminosity of 250-300 fb⁻¹ per year
 - design for $\mu \sim 140$ (~ 200) (peak luminosity of 5 (7) 10^{34} cm⁻² s⁻¹)
 - design equipment for 'ultimate' performance of 7.5 10³⁴ cm⁻² s⁻¹ and 4000 fb⁻¹

Major intervention on 1.2 km of LHC ring

- New IR-quads using Nb₃Sn superconductor
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

Paths to high luminosity

Ph. Lebrun

Overall HL-LHC cryogenic layout

CER

• HL-LHC cryogenic upgrade:

- 2 new cryoplants (~18 kW @ 4.5 K) at P1 and P5 for high-luminosity insertions.
- 1 new cryoplant (~4 kW @ 4.5 K) at P4 for SRF cryomodules. (Alternative under study: upgrade of 1 existing LHC cryoplant)

P1/P5 Cryogenic architecture

18 kW equivalent at 4.5 K including 3 kW at 1.8 K

Flow diagram IT+D1 - R5

Temperature level	Cooling circuit	Specific heat load [W/m] (Static)	Capacity	* / Point	Dynamic range
40-60 K	IT beam screen	16 (0)	3.2 kW		~1.3
	Thermal shield	6 (6)	3.6 kW	13 kW	
	Crab cavity	-	6 kW		
20-300 K	Current lead & SC link	-	40 g/s	40 g/s	~2
4.5-20 K	MS beam screen	2 (0.1)	0.1 kW	0.1 kW	~20
1.9 – 2 K	Cold-mass (1.9 K)	14 (0.35)	2.6 kW	2 1/1/	10
	Crab-cavity (2 K)	-	0.4 kW	JKVV	~10

Preliminary

*: Including uncertainty and overcapacity factor

CERN

New HL-LHC buildings & surface cryogenics at P1

HL-LHC cryogenics master schedule

- Introduction of cryogenics at CERN
- High-Luminosity LHC (HL-LHC) upgrade
- Future Circular Collider (FCC) cryogenics study

Scope of FCC study

- The main emphasis of the conceptual design study shall be the longterm goal of a hadron collider (FCC-hh) with a centre-of-mass energy of the order of 100 TeV in a new tunnel of 80 - 100 km circumference for the purpose of studying physics at the highest energies.
- The conceptual design study shall also include a lepton collider (FCC-ee) and its detectors, as a potential intermediate step towards realization of the hadron facility. Potential synergies with linear collider detector designs should be considered.
- Options for e-p scenarios and their impact on the infrastructure shall be examined at conceptual level.
- The study shall include cost and energy optimisation, industrialisation aspects and provide implementation scenarios, including schedule and cost profiles

Study of Future Circular Colliders

Quasi-circular tunnel of 80 to 100 km perimeter

FCC-hh baseline parameters

parameter	LHC	HL-LHC	FCC-hh	
c.m. energy [TeV]	14		100	
dipole magnet field [T]	8.33		16 (20)	
circumference [km]		36.7	100 (83)	
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5 [→20?]	
bunch spacing [ns]		25	25 {5}	
events / bunch crossing	27	135	170 {34}	
bunch population [10 ¹¹]	1.15	2.2	1 {0.2}	
norm. transverse emitt. [µm]	3.75	2.5	2.2 {0.44}	
IP beta-function [m]	0.55	0.15	1.1	
IP beam size [µm]	16.7	7.1	6.8 {3}	
synchrotron rad. [W/m/aperture]	0.17	0.33	28 (44)	
critical energy [keV]	0.044		4.3 (5.5)	
total syn.rad. power [MW]	0.0072	0.0146	4.8 (5.8)	
longitudinal damping time [h]	:	12.9	0.54 (0.32)	

Nb₃Sn SC magnets cooled at 1.9 K

5 MW dissipated in cryogenic environment

 \rightarrow beam screens are mandatory

→ Cooling temperature 40-60 K

FCC-hh refrigeration capacity (10-km sectors)

Temperature level	Cooling circuit	Specific heat load [W/m] (Static)	Capacity / Sector (~10 km)	Dynamic range
40 60 K	Beam screen	64 (0)	530 kW	6
40-00 K	Thermal shield	9 (9)	90 kW	~0
40-300 K	Current lead	-	85 g/s	~2
1.9 K	Cold-mass	1.4 (0.45)	12 kW	~3

- Large cooling capacity required above 40 K \rightarrow new for particle accelerators

- Large dynamic range required above 40 K (factor ~6) \rightarrow new for particle accelerators
- \rightarrow Special effort to develop an efficient and flexible 300-40 K refrigeration cycle.
- Large cooling capacity at 1.9 K (factor 5 w/r to LHC)

 \rightarrow Special effort to develop large and efficient 1.8-K refrigeration cycle .

up to 3 %

Siting study 93 km perimeter PRELIMINARY

Shaft depths up to 400 m! (~150 m for LHC)

FCC-hh arcs Single tunnel

FCC-hh (100 km) cryogenic layout

 \bigcirc

296

325

293

331

5.7

6.2

5.6

6.4

43

43

43

43

	[kW]	[kW]	[g/s]
•	592	11	85
•	616	12	85

Without operational margin !

FCC-hh cryoplant architecture

Cryogenics architecture

FCC-hh Cryo-distribution and helium inventory

Cryo-distribution: impact of higher design pressure and material

Study case	Design Pressure [bar]			
	В	C & D	E & F	
1. S-S + bellows	4	20	20	
2. S-S + bellows	4	20	50	
3. INVAR	4	20	50	

Wroclaw TU

Process flow diagram: Nominal operation

Ne-He cycle: 700-800 kW between 40 and 60 K

Hermetically sealed centrifugal compressors: - No dry gas seals, no lube-oil system and no gearbox

- Use of high speed induction motor (up to 200 Hz) and active magnetic bearings. The motor is cooled by process gas and directly coupled to the barrel type compressor.

Difficult to get high compression ratio and high compression efficiency with pure helium (light monoatomic gas):

- → Compression of a mixture of helium and neon (~75-25 %) (OK with neon as refrigeration T > 40 K)
- \rightarrow The warm compression efficiency is improved
- \rightarrow Expected global efficiency with respect to Carnot \rightarrow 42 %

Half-cell cooling loop

Superfluid He cooling "à la LHC"

Half-cell length (~105 m)

- Separate circuit for indirect cool-down and warm-up (no impact on the CM design pressure)
- Bayonet heat exchanger for Liquid-liquid LHe II
- Thermal shield and heat intercepts on the return headers
- Safety/quench valve spacing : ~100 m (to be validated \rightarrow ~40 MJ per magnets)
- Cold quench buffer (Header D) at 40 K (to be validated (LHC @ 20 K))

FCC-hh cool-down

FCC-hh cooldown: 44500 t of LN2 ~ 6 Globes of Science

and Innovation

H. Rodrigues

FCC-hh cryogenic electrical consumption

RH: resistive heating BGS: beam-gas scattering CM: cold mass heat-inleaks CL: current lead BS cir.: Beam screen circulator TS: thermal shield IC: image current SR: synchrotron radiation

FCC study: Towards 1 MW at 4.5 K !

Conclusion: FCC cryogenics study schedule

- Cryoplant studies by industrial partners (Air Liquide & Linde)
- Beam-screen transient \rightarrow local and global controls strategy
- Quench discharge and recovery (impact on CM design pressure and # of quench valves)
- Distribution system (heat in-leaks, INVAR option)

FCC study MoU status on 21 January 2015

44 collaboration members

ALBA/CELLS, Spain **U** Bern, Switzerland **BINP, Russia** CASE (SUNY/BNL), USA **CBPF, Brazil CEA Grenoble, France CIEMAT, Spain CNRS**, France **Cockcroft Institute, UK** U Colima, Mexico CSIC/IFIC, Spain **TU Darmstadt, Germany DESY, Germany TU Dresden, Germany** Duke U, USA

EPFL, Switzerland Gangneung-Wonju Nat. U., Korea **U** Geneva, Switzerland **Goethe U Frankfurt, Germany GSI**, Germany Hellenic Open U, Greece **HEPHY, Austria IFJ PAN Krakow, Poland INFN**, Italy **INP Minsk, Belarus** U Iowa, USA IPM, Iran UC Irvine, USA Istanbul Aydin U., Turkey

JAI/Oxford, UK JINR Dubna, Russia KEK, Japan KIAS, Korea King's College London, UK Korea U Sejong, Korea MEPhl, Russia Northern Illinois U., USA **NC PHEP Minsk, Belarus PSI, Switzerland** Sapienza/Roma, Italy UC Santa Barbara, USA U Silesia, Poland **TU Tampere, Finland** Wroclaw TU, Poland

Thank you for your attention!

FCC-ee design targets

- Aiming for very high luminosity: high beam current, small beam size
- Luminosity at each energy limited by synchrotron radiation from the beams, limit 50 MW per beam
- highest possible luminosity for a wide physics program ranging from the Z pole to the $t\bar{t}$ production threshold
 - beam energy range from 45 GeV to 175 GeV
- main physics programs / energies:
 - Z (45.5 GeV): Z pole, 'TeraZ' and high precision $M_Z \& G_Z$
 - W (80 GeV): W pair production threshold,
 - H (120 GeV): ZH production (maximum rate of H's),
 - *t (175 GeV): tt threshold*
- some polarization up to \geq 80 GeV for beam energy calibration
- optimized for operation at 120 GeV

FCC-ee top-up injection

- In view of the low luminosity lifetime, a booster of the same size (same tunnel) as the collider ring(s) must provide beams for top-up injection
 - same RF voltage, but low power (~ MW)
 - $_{\circ}~$ top up frequency $\sim 0.1~Hz$
 - \circ booster injection energy ~5-20 GeV
 - $_{\circ}$ $\,$ bypass around the experiments $\,$

FCC-ee RF straight section

In view of the low luminosity lifetime, a booster of the same size (same tunnel) Ø6.0 m as the collider ring(s) must provide beams for top-up injection Hybrid Ø1,2m duct Lighting 1300 + Safe passage Chicane at ends of Klystron gallery

2 main-ring and 1 booster-ring RF module strings

FCC-ee cryogenic capacity (2 main + 1 booster rings)

Basic input:

- RF-cavity modules installed in the extended straight sections (ESS at Points J and D)
- Baseline: 1-2 cells, 400 MHz RF cavities
 @ 4.5 K with Q0= 3.1 E9
- Qstat: 5 W/m (main rings and booster ring)
- Qdyn for booster ring: 10 % of one main ring

Machine	Q stat [kW]	Q dyn [kW]	Qtot [kW]	Cryoplant #	Cryoplant size [kW@4.5 K]
Z	2.9	0.5	3.4	2	1.7
WW	3.7	24	27	2	14
ZH	14	88	102	4	26
ttbar	31	154	185	4 (8)	46* (23)

FCC-ee: Cryogenic layout

ERN

FCC-ee: Cryogenics electrical consumption

