ESS Target Cryogenic System
European Cryogenic Days
CERN

John Jurns (ESS) Lead Engineer TMCP
Jesper Ringnér (ESS) Lead Engineer CMS
Marc Kickulies (ESS) Lead Engineer H₂ Moderators
Yannick Beßler (FZJ) Project Leader
ESS Target Cryogenic Systems Overview

Target Moderator Cryoplant (TMCP) – Provides cooling to the H$_2$/He heat exchanger to remove heat from the hydrogen circuit. He circuit operates at approximately 15 K and 2.1 MPa.

Cryogenic Moderator System (CMS) – Cryogenic hydrogen system that circulates sub cooled liquid hydrogen to cold moderators, and removes heat through a heat exchanger to a cold helium circuit.

Cold Moderators – Cryogenic hydrogen moderators use sub cooled liquid hydrogen at 17 K and 1.1 MPa to reduce the energy of the neutrons.
Integrated TMCP/CMS/MR system

TMCP

Cold box

Compressors

Buffer tanks

CMS

H₂ transfer lines

Moderator Reflector

He transfer lines
ESS moderator & reflector system design

- Spallation Target
- Rotation Unit
- LH2 Transfer Lines
- Moderator & Reflector Plug
- LH2 Cryostat
ESS moderator & reflector unit design

Cold Butterfly moderator (LH$_2$)

Thermal moderator (water)

Be-Reflector/-vessel

LH$_2$ pipework

Vacuum chamber (extruded profile include 2 cooling chambers for thermal moderator water
Butterfly cold moderator provides significant increase in neutron brightness compared to ESS TDR design.
ESS cold Moderator heat input by neutrons

\[h(x, y, z) = 2.287 + 33.9 \exp \left(-\frac{1}{2} \left(\frac{x - 5.34}{13} \right)^2 - \frac{1}{2} \left(\frac{\sqrt{y^2 + z^2} + 17.24}{18.18} \right)^2 \right) \]

\[h(x, y, z) = -0.17317 + \frac{101.78613}{\left[1 + \left(\frac{x - 0.42345}{18.20385} \right)^2 \right] \left[1 + \left(\frac{\sqrt{y^2 + z^2} + 3.56612}{3.34324} \right)^2 \right]} \]

\[\sum \text{upper cold Moderators} \approx 8.0 \text{ kW} \]
ESS cold Moderator fluid thermal dynamics
(temp temperature variation during 350 ms pulse)
ESS cold Moderator structural mechanics

Stress @15 bar / 20 K operation case

Stress @17 bar / 20 K design case S<=55 MPa

Stress @21.45 bar / 300 K test case S>55

Deformation (without Invar)

S=55MPa (RCC MRx)
Mounted Al-6061-T6 pieces bevor eBeam welding

Weld filler

First burst test with water / burst pressure 181 bar / design pressure 17 bar
Main task for the Cryogenic Moderator System.

The Target Station shall use para-H$_2$ material as cold moderator coolant such that the neutronic performance will sustain the required brightness while the technical risk will be residual thanks to the available experience using this material.

- Expected Heat load neutronic: 19.0kW incl. Contingency margin
- Expected Heat load static: 9.8kW
- Hydrogen content in system: 22kg liquid hydrogen
- Working Temperature: 17-20.5K
- Working pressure: 1.1MPa
- Design pressure: 1.7MPa
- Pressure drop: ~0.2MPa
- Expected mass flow: 1000 g/s
- Ortho-Para catalyist: Oxisorb placed in a by-pass line
- OP ratio: >99.5%
- In line measurement: Raman spectroscopy ahead and after moderator
- Pressure control: Active buffer, expansion vessel.
CMS Overview

Cryostat

Weight 3700kg
Ø: 1800mm
H: 2000mm

Pipes and components insulated with MLI
Small mean temperature variations can cause severe pressure fluctuations

\(\text{H}_2 \) at < 20 K almost incompressible

\(\text{H}_2 \) at > 35 K becomes compressible

-> buffer mitigates pressure variations
CMS Overview, heat exchanger 1 & 2

Heat exchanger 1:
- Aluminum plate fin exchanger
- Used to liquefy the hydrogen during fill and maintain temperature during operation

Heat exchanger 2:
- Fin tube exchanger
- To liquify GH_2 from buffer and main fill line during operation.
Hydrogen Pumps

Serial setup with 2 pumps

Each pump provides full mass flow but shares the pressure drop

If one pump fails the second pump will step up and compensate for the full pressure drop.

Equipment spec pumps

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate</td>
<td>Q_{max}: 1000g/s @17K</td>
</tr>
<tr>
<td>Working Temperature media</td>
<td>17-300K</td>
</tr>
<tr>
<td>Working pressure</td>
<td>1.1MPa</td>
</tr>
<tr>
<td>Set up</td>
<td>Serial connection, Both pumps at full flow, shared pressure drop</td>
</tr>
<tr>
<td>Fail mode</td>
<td>1 pump, 100% flow</td>
</tr>
<tr>
<td>Pressure drop estimated</td>
<td>ΔP: 0.1/0.2MPa</td>
</tr>
<tr>
<td>Media</td>
<td>Gaseous, supercritical and liquid H$_2$</td>
</tr>
<tr>
<td>Control</td>
<td>Frequency Controlled motor</td>
</tr>
</tbody>
</table>
CMS Overview
connections to moderator plug

Manifold includes valves, instruments and raman probes.

Jumper connections with bayonet couplings inside the monolith.

- Vent line for hydrogen
- Connected to safety relief valves and manual release valves
- Purged with He/N₂
Unique attributes of the TMCP

- High **maximum** heat load: 30 kW at 15 K
- Wide **range** of dynamic heat loads: 5-30 kW
- 6 years from 1st protons on target to full power operation
- Multiple operating modes
 - Steady state – 15-100% of capacity
 - Transient – Cool down and warm up
 - Switching – Short term fast changes
- CMS requires narrow temperature range: 17-21 K
- High heat load and narrow temperature range means **high helium mass flow rate**
- Long cryogenic transfer lines results in high helium inventory - ~490 kg total
TMCP Design Drivers

Narrow operating range

Closed loop modified Brayton cycle

Large variation in heat load

H$_2$/He heat exchanger

0.00 MW
0.5 MW
1.43 MW
3.23 MW
5.01 MW

Beam off
Beam comm.
Phase 1
Phase 2
Phase 3

0.00 MW
0.5 MW
1.43 MW
3.23 MW
5.01 MW

Heat load (kW)

Static Heatload He Cryo TLs
Static Heatload H$_2$ Box + TLs
H$_2$ Circulators
Static Heatload Moderators
Neutronic heating

H$_2$/He heat exchanger

15 K
17 K
5 K max delta T
18.8 K
3.5 K max delta T

20 K
20.5 K
Helium
Hydrogen
TMCP Process Design Description

Operating modes

- Nominal design
- Low Power
- Beam trip

T-S diagram, nominal design

Temperature

Entropy

21.5 bar
313 K
1.1 kg/s

0.1 kg/s
5.2 bar
309 K

20.6 bar
20 K

21.2 bar
15 K

5.4 bar
14 K

CMS heat
Highlights

• Butterfly design successfully modeled, manufacturing process proven
• Butterfly design promises significant improvement in neutron brightness
• CMS Critical Design Review passed, detailed design on-going
• CMS buffer unique robust design, proof of concept testing planned
• CMS long lead items (pumps, heat exchanger) procurement cycle started
• TMCP contract award made May 2016
• Project on schedule
 – TMCP commissioning complete 4Q18
 – CMS installation complete 1Q19
 – Integrated testing 1-2Q19
Finis