Coulomb Blockade Thermometer: a primary device for sub-kelvin measurements

M. Meschke1, O.M. Hahtela2, A.V. Feshchenko1, A. Kemppinen2, D. Gunnarsson3, M. Prunnila3, A. Manninen2, M. Heinonen2, J.P. Pekola1

1 Aalto University, Low Temperature Laboratory, (OVLL), Finland
2 Centre for Metrology and Accreditation (MIKES), Finland
3 VTT Technical Research Centre, Finland

• CBT: the operation principle
• Challenges: E_C; background; homogeneity
• Fabrication for high $T > 4K >$ low T sensor
• Sensor performance

$$T_{CBT} = \frac{eV_{1/2}}{5.439Nk_B}$$
Labaratory

- wire bonder etc..
- 4 small dilution refrigerators $T \sim 30\,\text{mK}$
- one „dry“ cryostate for high frequency measurements,
Research environment

OtaNano

Low Temperature Laboratory

- 2600 m² cleanroom (ISO 4 to ISO 6)
- jointly run by VTT Technical Research Centre of Finland and Aalto University
- open access facility
- Electron beam lithography
 Vistec EPGS 5000+ (2014)
- RIEOxfordPlasmaLab80Plus
- ALD reactors (Beneq, Picosun)
- Thin film deposition e-beam, thermal, sputter
- Mask aligner, Laserwriter
- sputter, FIB, SEM, ...
UNCERTAINTY COMPONENTS AND TRACEABILITY OF COULOMB BLOCKADE THERMOMETRY

• below 1 K: Provisional Low Temperature Scale of 2000, PLTS-2000

• proposed kelvin redefinition in terms of the Boltzmann constant (k_B)

• Implementing the new kelvin InK (2) => need for primary thermometry methods

results with different methods, check of consistency
$E_C \ll k_B T$

Thermometry by Arrays of Tunnel Junctions

J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen
Laboratory of Applied Physics, Department of Physics, University of Jyväskylä, P. O. Box 35, 40351 Jyväskylä, Finland
(Received 13 July 1994)
CBT: Coulomb Blockade Thermometer

Thermometry by Arrays of Tunnel Junctions

J. P. Peikola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen
Laboratory of Applied Physics, Department of Physics, University of Jyväskylä, P. O. Box 35, 40351 Jyväskylä, Finland
(Received 13 July 1994)

\[E_C \ll k_B T \]

\[
T_{CBT} = \frac{eV_{1/2}}{5.439Nk_B}
\]

\[
\Delta G/G_T = \frac{1}{6k_B T} \frac{E_C}{k_B T}
\]
CBT: Coulomb Blockade Thermometer

Challenges: Ec, high T (homogeneity, background) low T, (thermalisation)
Coulomb Blockade: charging energy E_C

$T \frac{E_c}{k_B}$

<table>
<thead>
<tr>
<th>T (K)</th>
<th>E_c (k$_B$)</th>
<th>size (nm)</th>
<th>Fabrication</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10^2</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>10</td>
<td>10^1</td>
<td>10</td>
<td>EBL</td>
</tr>
<tr>
<td>1</td>
<td>10^0</td>
<td>100</td>
<td>Optical/EBL</td>
</tr>
<tr>
<td>100 mK</td>
<td>10^{-1}</td>
<td>1</td>
<td>Optical mask</td>
</tr>
<tr>
<td>10 mK</td>
<td>10^{-2}</td>
<td>10</td>
<td>Optical mask</td>
</tr>
</tbody>
</table>

A. V. Feshchenko, M. Meschke, D. Gunnarsson, M. Prunnila, L. Roschier, J. S. Penttilä and J. P. Pekola

Primary thermometry in the intermediate Coulomb blockade regime

Fabrication with tri-layer resist scheme

Germanium mask

45 nm x 32 nm

77 x 30 junction array; Evaporation rate > 1 nm/s
Fabrication with tri layer resist scheme

Germanium mask, 45 nm x 32 nm junction size

<table>
<thead>
<tr>
<th>Junction</th>
<th>Array 1 kΩ</th>
<th>Array 2 kΩ</th>
<th>Array 3 kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
<td>93</td>
<td>74.0</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>92.5</td>
<td>69.5</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>85</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>89.5</td>
<td>68.9</td>
</tr>
<tr>
<td>5</td>
<td>74</td>
<td>--</td>
<td>70.9</td>
</tr>
<tr>
<td>6</td>
<td>89</td>
<td>92</td>
<td>70.2</td>
</tr>
<tr>
<td>7</td>
<td>94</td>
<td>92</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>99</td>
<td>103</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>76</td>
<td>107</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td>87</td>
<td>96</td>
<td>68</td>
</tr>
<tr>
<td>11</td>
<td>78</td>
<td>88</td>
<td>75.6</td>
</tr>
<tr>
<td>Mean, kΩ</td>
<td>81.6</td>
<td>93.8</td>
<td>70</td>
</tr>
<tr>
<td>standard deviation, kΩ</td>
<td>9.3</td>
<td>6.7</td>
<td>3.3</td>
</tr>
<tr>
<td>relative deviation,</td>
<td>11.4 %</td>
<td>7.2 %</td>
<td>4.7 %</td>
</tr>
<tr>
<td>Resulting temperature deviation</td>
<td>-0.7 %</td>
<td>-0.25 %</td>
<td>-0.07 %</td>
</tr>
</tbody>
</table>

\[T = 4.38(5) \text{ K} \]
CBT setup: compare 3 sensors

$V_{\text{BIAS}/\text{Junction}}$

DG/ST

4.2K

$\text{Ec/kB} = 11\text{ K}$
CBT & background correction

\[\Delta G/G \]

\[V_{BIAS}/Junction \]

\[T = 9K \]

Graph showing the relationship between \(V_{BIAS}/Junction \) and \(\Delta G/G \) for different CBTs at a temperature of 9K.
CBT & background correction

- Fit [-30 mV/J .. 30 mV/J]
- Background correction $R(1 + aV^b)$ $b = 6$
homogeneity of CBT for T>10 K

M. Meschke, O.M. Hahtela, A. Kemppinen, A. Manninen, M. Heinonen, J.P. Pekola

Fabrication with suspended germanium mask:
- Good resolution => high E_C (>10 K)
- Homogeneity of R_T (~ 5%) for absolute T accuracy of ~ 0.5%

3 sensors agree within 0.2 % (relative deviation) ⇒ <10 % scatter in R_T
Voltage gain of 100 required for SJT!
SJT vs. CBT at T optimum

Direct voltage measurement,
No amplification needed
(77 Junctions)

⇒ 1e-4
⇒ Limit homogeneity < 1e-2

Voltage gain of 100 required for SJT!
⇒ 1e-2
Tunnel junction process for CBTs

M. Prunnila, M. Meschke, D. Gunnarsson, S. Enouz-Vedrenne, J. M. Kivioja, and J.P. Pekola

Fabrication of Low Temperature CBTs

Nanoelectronic primary thermometry below 4 mK

Nature Communications 7, 10455 (2016)
Characterisation of Low Temperature CBTs

New evaluation of $T - T_{2000}$ from 0.02 K to 1 K by independent thermodynamic methods

J. Engert, et al. proceedings of Tempmekko 2016 (InK)
Coulomb Blockade Thermometer: a primary device for (sub)-kelvin measurements

M. Meschke¹, O.M. Hahtela², A.V. Feshchenko¹, A. Kemppinen², D. Gunnarsson³, M. Prunnila³, A. Manninen², M. Heinonen², J.P. Pekola¹

1 Aalto University, Low Temperature Laboratory, (OVLL), Finland
2 Centre for Metrology and Accreditation (MIKES), Finland
3 VTT Technical Research Centre, Finland

- Robust temperature range 10 mK .. 10 K
- Primary + self diagnostic
- Accurate (1% total accuracy)
- Simple voltage measurement
- Robust (ESD, radiation, magnet field (20 Tesla)