Heat transfer at a sapphire – indium interface in the 30 mK – 300 mK temperature range

J. Liberadzka1,3, T. Koettig1, J. Bremer1, C. C. W. van der Post2 and H. J. M. ter Brake3

1CERN, Switzerland,
2Fontys School of Natural Sciences, Netherlands
3University of Twente, Netherlands
Content

- Motivation – AEGIS
- Dilution Refrigerator
- Experimental setup
- Results
- Conclusions
AEgIS:
Antimatter Experiment: Gravity, Interferometry, Spectroscopy

Goal:
direct measurement of the Earth’s gravitational acceleration \(g \) on antihydrogen within 1% accuracy

Antihydrogen formation:

\[
P_{s}^{*} + \bar{p} \rightarrow \bar{H}^{*} + e^{-}
\]
AEgIS apparatus lay-out

5T-magnet
Nominal current 170 A
Stored energy 419 kJ
Cold bore 250 mm

1T-magnet
Nominal current 85 A
Stored energy 29 kJ
Cold bore 160 mm

Antihydrogen in a Penning trap below 100 mK
Ultra-Cold Electrodes

- 10 electrodes cooled to 100 mK
- Made of radiation hard materials
- Ultra-high vacuum (< 10^{-12} mbar)
- Electrical insulation for up to 1kV between neighbouring electrodes
- geometry with very high precision

Sapphire as electrical insulator and good thermal conductor at low temperature

Thermal performance of a metal – dielectric Interface to be studied in 30 – 300 mK range
CERN Cryolab DR

T = 1.3 K

1 K pot

T = 0.6 K

Still

Mixing Chamber

20 mK < T < 300 mK

Pictures by Patrick Wikus
Experimental setup

Sapphire disk

\[\phi = 20 \, mm \]

1 mm
Experimental setup

Polished surfaces
Experimental setup

Indium vapor deposited + 125 μm foil
Experimental setup
Experimental setup
Experimental setup

T_{st} \quad EH

Stamp

T_{pl}

Platform
Experimental setup
Experimental setup

Platform

Stamp EH

T_{st}

T_{pl}
Experimental setup
Experimental setup

125 μm indium foil
Experimental setup

Superconducting solenoid

Stamp (EH)

Platform

3He/4He mixture

Superconducting solenoid
Temperature as a function of applied heat load, Indium in normal conducting state

![Graph showing temperature as a function of power for different TMC values.](image)

- TMC 62 mK
- TMC 50 mK
- TMC 30 mK

Power [μW] vs. Temperature [mK] for TMC 30, Stamp, TMC 30, Platform, TMC 50, Stamp, TMC 50, Platform, TMC 70, Stamp, TMC 70, Platform.
Temperature as a function of applied heat load, Indium in superconducting state
Kapitza resistance

\[R_{\text{tot}} = \frac{A}{4Q} \left(T_{\text{st}}^4 - T_{\text{pl}}^4 \right) \]

\[\alpha = 4^\circ \]
\[t = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2} \]

helium – copper only \(10^{-5}\)
Thermal resistivity of the compressed setup

\[R_{tot} = \frac{A}{4Q} \left(T_{st}^4 - T_{pl}^4 \right) \]

- Indium SC
- Indium NC

- TMC 20, Indium SC
- TMC 50, Indium SC
- TMC 70, Indium SC
- TMC 100, Indium SC
- TMC 30, Indium NC
- TMC 50, Indium NC
- TMC 70, Indium NC
Thermal resistivity without compressing force

Thermal resistivity [cm2 K4 W$^{-1}$] vs Temp stamp [mK]

- TMC 30, Indium NC
- TMC 50, Indium NC
- TMC 70, Indium NC
- TMC 100, Indium NC
- TMC 30, Indium SC
- TMC 50, Indium SC
- TMC 70, Indium SC
- TMC 100, Indium SC

Indium NC
Indium SC

ECD 2016

10/03/2016
Thermal resistivity with NC indium

![Graph showing thermal resistivity vs. temp stamp for different samples](image)

- **TMC 30 - no force, In NC**
- **TMC 50 - no force, In NC**
- **TMC 70 - no force, In NC**
- **TMC 100 - no force, In NC**
- **TMC 30 - with force, In NC**
- **TMC 50 - with force, In NC**
- **TMC 70 - with force, In NC**
Thermal resistivity of the setup with 1 mm and 1.5 mm sapphire disk with NC indium

*Courtesy T. Eisel, PhD Thesis, CERN, Cryolab
Conclusions

• Surface preparation essential – polished surface with vapor deposited indium gives the best results

• The presence of the magnetic field shifts the dielectric – metallic interface and significantly changes the overall resistivity

• Compressing force doesn’t influence the results with indium in normal conducting state

• The electrode mounting structure in AEgIS can be removed after a good connection is obtained