

Heat transfer at a sapphire – indium interface in the 30 mK – 300 mK temperature range

J. Liberadzka^{1,3}, T. Koettig¹, J. Bremer¹, C. C. W. van der Post² and H. J. M. ter Brake³

> ¹CERN, Switzerland, ²Fontys School of Natural Sciences, Netherlands ³University of Twente, Netherlands

10/03/2016

ECD 2016

Content

- Motivation AEgIS
- Dilution Refrigerator
- Experimental setup
- Results
- Conclusions

AEgIS:

Antimatter Experiment: Gravity, Interferometry, Spectroscopy

Goal:

direct measurement of the Earth's gravitational acceleration **g** on antihydrogen within 1% accuracy

Antihydrogen formation:

AEgIS apparatus lay-out

Antihydrogen in a Penning trap below 100 mK

Ultra-Cold Electrodes

- 10 electrodes cooled to 100 mK
- Made of radiation hard materials
- Ultra-high vacuum (< 10⁻¹² mbar)
- Electrical insulation for up to 1kV between neighbouring electrodes
- geometry with very high precision

Sapphire as electrical insulator and good thermal conductor at low temprtature

Thermal performance of a metal – dielectric Interface to be studied in 30 – 300 mK range

Indium vapor deposited + 125 μm foil

X.

Temperature as a function of applied heat load, Indium in normal conducting state

Temperature as a function of applied heat load, Indium in superconducting state

Kapitza resistance

$$R_{tot} = \frac{A}{4\dot{Q}} \left(T_{st}^4 - T_{pl}^4 \right)$$

Ch. Enss, S.Hunklinger – Low-Temperature Physics

$$\alpha = 4^{\circ}$$

$$t = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}$$
helium - copper
only 10⁻⁵

Thermal resistivity of the compressed setup

Thermal resistivity without compressing force

10/03/2016

ECD 2016

Thermal resisitivity with NC indium

10/03/2016

ECD 2016

24

Thermal resisitivity of the setup with 1 mm and 1.5 mm sapphire disk with NC indium

Conclusions

- Surface preparation essential polished surface with vapor deposited indium gives the best results
- The presence of the magnetic field shifts the dielectric metallic interface and significantly changes the overall resistivity
- Compressing force doesn't influence the results with indium in normal conducting state
- The electrode mounting structure in AEgIS can be removed after a good connection is obtained

