

HV-CMOS Coupling Simulation*

* Updated on Sept 27th

CLICpix + CCPDv3. Szymon Kulis - http://skulis.web.cern.ch/skulis/clicpix/

CLICdp Workshop 31/08/2016

Mateus Vicente

Outline

Introduction to Capacitive Coupling

- Detector assembly
- Objective
 - Find coupling between pixels
 - Maxwell Capacitance Matrix
 - Simulate existing chips
 - Understand observed performance
 - Simulate new chips
 - Optimize design
- □ Simulation
 - Physics model
 - COMSOL Multiphysics
 - Geometry
- - and discussion

Conclusions

CLICpix Coupled to CCPDv3. Szymon Kulis - http://skulis.web.cern.ch/skulis/clicpix/

Detector Assembly

CERN

Hybrid detector bump-bonded (DC Coupled)

- Signal transmitted form sensor pixel to read-out pixel by a metalic connection (bump bond)
 - Planar sensor

Detector Assembly

CERN

Hybrid detector glued (AC Coupled)

- Signal capacitively transmitted form sensor pixel to read-out pixel through a dielectric glue layer*
 - **HV-CMOS** sensor sensor zone depletion "Air" Glue layer * Araldite 2011 Epoxy Pixel 1 Pixel 3 Pixel 2 electronics chip

Chips Bonding

Flip-Chip with the Accµra 100 machine*

- Heating up to 400C and force applied by bonding arm up to 100 kg
- XY Alignment stage with resolution of 0.015 um
- □ Post bonding accuracy < 0.5 um**
 - ** Not straightforward. Special software created to help on chip alignment (PixelShop)

*At Geneva University

Chips Assembly CLICpix + CCPDv3

- CLICpix + CCPDv3 assemblies produced
 - Assemblies studied in Test Beam
 - Early measurements: Assemblies with pad alignment (A)
 - Later measurements: Assemblies with "ideal alignment" (B) and with offset in x-direction by 1/4 pixel or 1/2 pixel.
 - Assemblies for cross-section measurements were produced with pad alignment (A).

6

CLICpix + CCPDv3. Szymon Kulis - http://skulis.web.cern.ch/skulis/clicpix/

mvicente@cern.ch 31/08/16

Chips (Mis)Alignment?

Asymmetric pixel response in Test Beam data

- Pixel response function
 - Ideal function should be smeared rectangular function with width described by the lateral charge diffusion
- Difference response in row and column directions
 - Possible misalignment in the Col (a) and/or Row (b) direction

Assembly Measurement

Cross Section after Flip-Chip

- Measurement of SET29 sample (CLICpix + CCPDv3) with an optical microscope
 - Bump pads misaligned (with respect to A) by ~ 1.1 um (after bonding process)

Cross section of 3D model **U**M Cross section of detector assembly CLICpix (yellow) and CCPDv3 (orange) pads

SET29 measurement thanks to Florian Pipper

31/08/16

Physics model

Relationship between the charge and electric potential of different terminals

- Purely Geometric (+ material dependency)!!!
 - Quantitatively

9

Maxwell Coefficients of Capacitance in the backup

$$C_{ij} \equiv -\varepsilon_0 \oint_{S_i} \nabla f_j \cdot \mathbf{n}_i \, dS$$

Qualitatively

Scott Hughes - Lecture 6: Capacitance – MIT 2005

 $V \equiv \phi_2 - \phi_1 = -\int_1^2 \vec{E} \cdot d\vec{s}$ Independent of the integration path

Potential difference V must be proportional to the geometry

V = (Horribly messy constant depending on geometry $) \times Q$

Materials

Capacitance

- Glue + 4 passivation layers (2 from sensor + 2 from the read-out chip)
- Glue Dielectric Coefficient: 1 Hz = 3.4 | 100 Hz = 3.2 | 1000 Hz = 3.2 | >1000 Hz = <3.2 ? (To be measured)</p>

Physics model

10

- Capacitance between pixels in the CLICpix2 and C3PD chips
- Purely Geometric (+ material dependency)!!!
 - Quantitatively
 - Maxwell Coefficients of Capacitance in the backup

$$C_{ij} \equiv -\varepsilon_0 \oint_{S_i} \nabla f_j \cdot \mathbf{n}_i \, dS$$

Qualitatively

Scott Hughes - Lecture 6: Capacitance - MIT 2005

 $V \equiv \phi_2 - \phi_1 = -\int_1^2 \vec{E} \cdot d\vec{s}$ Independent of the integration path ClCpix2 and C3PD pads

Potential difference V must be proportional to the geometry

V = (Horribly messy constant depending on geometry $) \times Q$

Materials

Capacitance

- Glue + 4 passivation layers (2 from sensor + 2 from the read-out chip)
- Glue Dielectric Coefficient: 1 Hz = 3.4 | 100 Hz = 3.2 | 1000 Hz = 3.2 | >1000 Hz = <3.2 ? (To be measured)</p>
 mvicente@cern.ch 31/08/16

Simulation COMSOL Multiphysics[®]

Key Features @ https://www.comsol.com/comsol-multiphysics#specs

- Finite Element Analysis
- Several different templates for general second-order systems of nonlinear partial differential equations
 - Electric currents
 - Heat transfer in solids and fluids
- Free tetrahedral meshing
- Nonlinear material properties as a function of any physical quantity

Name	Expression	Value	Description
d	3[um]	3.0000E-6 m	Cold arm bridge width
dw	15[um]	1.5000E-5 m	Cold arm width
gap	3[um]	3.0000E-6 m	Gap between arms
wb	10[um]	1.0000E-5 m	Electrode base width
wv	25[um]	2.5000E-5 m	Hot arm length difference
L	240[um]	2.4000E-4 m	Actuator length
L1	L-wb	2.3000E-4 m	Hot arm A length
L2	L-wb-wv	2.0500E-4 m	Hot arm B length
L3	L-2*wb-wv-L/48-L/6	1.5000E-4 m	Cold arm length
L4	L/6	4.0000E-5 m	Cold arm bridge length
DV	4[V]	4.0000 V	Voltage
✿ ♣ 📴 lame: L3	009		
xpression:			
L-2*wb-w	v-L/48-L/6		

11

Transistor operation where an applied gate voltage turns the device on and then determines the drain saturation current.

mvicente@cern.ch 31/08/16

Simulation Fully Integrated Software Suite

- 4 🚺 Model 1 (mod1)
 - Definitions
 - 🛛 🖄 Geometry 1 🔸
 - ▲ States A States
 - 🔅 😻 Silicon (mat1) 🖪
 - > 👼 Semiconductor (semi)
 - > 🖲 Heat Transfer in Solids (ht)
 - 🖌 🎯 Mesh 1
 - 실 Size
 - P Kee Triangular 1
- 4 🎬 Study 1
 - Parametric Sweep
 - \square Step 1: Stationary $\succ \leftarrow$
 - Solver Configurations

4

- 🤉 릚 Job Configurations
- 4 🖻 Results
 - 🛛 📕 Data Sets
 - Street Values
 - III Tables
 - 🤉 🔄 IV Curve
 - Electron Concentration (semi) 1
 - Hole Concentration (semi) 1

All modeling steps are available from a single unified environment. The model tree (shown on the left) provides quick and easy access to all the settings:

Geometry setup / CAD /ECAD Import

User defined and built in material libraries

Simple and intuitive Multiphysics Problem setup

- Meshing
- Solving
 - Visualization + Postprocessing

Data Import/Export

COMSOL is designed from the bottom up for arbitrary combinations of physical equations and easy user customization

Solidworks parts

Geometry CLICpix2 + C3PD model

Solidworks parts

Geometry CLICpix2 + C3PD model

Solidworks parts

15

mvicente@cern.ch 31/08/16

Geometry Assembly model (gap = 0.22μ m)

16

HV-CMOS sensor on TOP and Read-out chip on BOTTOM

31/08/16

17 File 🔻

Ħ

Build

All

Build

Home

TR Import

📑 Export

1

Definitions A Geometry 1

🕨 📑 Materials

🔺 🛦 Meshes

111

Model Builder

-

Simulation

COMSOL Multiphysics[®] - Pads/Terminals

Simulation

Simulation COMSOL Multiphysics[®] - Mesh

Results

Coupling/Capacitance between all the terminals (pixel pads)

Table 10 Pro	Progress Log														→ # ×		
8.85 e-12 AUTO	8.5 850 o.s	85 🍾 🛅		ħ □ Ⅲ	•												
Canacitance (fE																	
capacitance (ii	/																
16.886	-0.39750	-1.5686E-8	-0.0014967	-5.7629E-5	-2.0997E-9	-4.2845E-10	-1.0636E-10	-7.7491E-13	-2.6928	-0.014929	-9.7037E-8	-0.0025388	-6.8890E-5	-1.2688E-8	-2.7128E-8	-4.9638E-9	-3.4026E-11
-0.39750	17.667	-0.39743	-5.7600E-5	-0.0014657	-5.7607E-5	-6.2144E-11	-3.5882E-10	-1.0650E-10	-0.016202	-2.6776	-0.014920	-3.2961E-5	-0.0024986	-6.8794E-5	-3.5494E-9	-2.3491E-8	-4.9723E-9
-1.5686E-8	-0.39743								-0.016198	-2.6927	-9.3946E-9	-3.2873E-5	-0.0025520	-2.4359E-11	-3.5197E-9	-2.8074E-8	
-0.0014967	-5.7600E-5			1	6				-6.8857E-5	-1.2669E-8	-2.6898	-0.014880	-8.5992E-8	-0.0030361	-5.0761E-5	-1.0888E-8	
-5.7630E-5	-0.0014657		1		\sim	1			-0.0024987	-6.8847E-5	-0.016120	-2.6746	-0.014876	-8.2951E-5	-0.0029634	-5.0759E-5	
-2.0996E-9	-5.7607E-5		13									-8.7869E-8	-0.016122	-2.6898	-1.4377E-8	-8.3040E-5	-0.0030222
-4.2847E-10	-6.2143E-1											-0.0030362	-5.0752E-5	-1.0896E-8	-2.6923	-0.014942	-9.8739E-8
-1.0637E-10	-3.5882E-1	10								-2.8627E-8	-4.9704E-9	-8.2976E-5	-0.0029644	-5.0760E-5	-0.016151	-2.6769	-0.014938
-7.7481E-13	-1.0650E-1			11		5	15		9	-5.4247E-9	-3.3749E-8	-1.4350E-8	-8.3054E-5	-0.0030232	-9.7434E-8	-0.016157	-2.6923
-2.6928	-0.016202			\sim						-0.030083	-2.9487E-6	-0.033500	-6.8671E-4	-3.6036E-7	-2.9691E-6	-3.6108E-7	-1.5354E-9
-0.014929	-2.6776				2					7.0506	-0.030060	-6.8650E-4	-0.032827	-6.8641E-4	-3.6184E-7	-2.6066E-6	-3.6166E-7
-9.7041E-8	-0.014920							-		-0.030061	6.9887	-3.6012E-7	-6.8610E-4	-0.033467	-1.5370E-9	-3.6180E-7	-2.9708E-6
-0.0025387	-3.2961E-5									-6.8650E-4	-3.6010E-7	7.0538	-0.029399	-2.5881E-6	-0.033180	-6.8078E-4	-3.5927E-7
-6.8890E-5	-0.0024987					~				-0.032827	-6.8610E-4	-0.029399	7.0835	-0.029376	-6.8142E-4	-0.032472	-6.8087E-4
-1.2689E-8	-6.8793E-5	-0.0020021	-0.3330E-0	-0.014670	-2.0090	-1.003/E-0	-2.0700E-2	-0.0050251	-2.0020E-7	-6.8641E-4	-0.033467	-2.5881E-6	-0.029376	7.0533	-3.5956E-7	-6.8097E-4	-0.033181
-2.7129E-8	-3.5492E-9	-2.4360E-11	-0.0030360	-8.2949E-5	-1.4376E-8	-2.6923	-0.016151	-9.7434E-8	-2.9692E-6	-3.6183E-7	-1.5373E-9	-0.033180	-6.8142E-4	-3.5954E-7	7.0201	-0.030088	-2.9502E-6
-4.9640E-9	-2.3491E-8	-3.5195E-9	-5.0761E-5	-0.0029632	-8.3040E-5	-0.014942	-2.6769	-0.016157	-3.6109E-7	-2.6066E-6	-3.6180E-7	-6.8079E-4	-0.032472	-6.8096E-4	-0.030088	7.0499	-0.030073
-3.4016E-11	-4.9721E-9	-2.8072E-8	-1.0888E-8	-5.0758E-5	-0.0030223	-9.8737E-8	-0.014938	-2.6923	-1.5355E-9	-3.6165E-7	-2.9707E-6	-3.5927E-7	-6.8087E-4	-0.033181	-2.9502E-6	-0.030073	7.0196

C3PD terminals

21

CERN

Results

22

Capacitance Matrix – CCPDv3→CLICpix

Coupling between central pixel in CCPDv3 and other 9 pixels in the CLICpix chip

- Fraction on right plot: $C_i = C_i / C_{center}$
- Asymmetric coupling with central top and bottom pixels (difference $\sim 2\%$)

Alignment Scan Problem with the 3x3 matrix

JERI

mvicente@cern.ch 31/08/16

Alignment Scan 5x5 matrix, checking 3x3 central pixels

CLICpix + CCPDv3 assembly in COMSOL

mvicente@cern.ch 31/08/16

Effect on X-direction Misalignment Cross Pixel Coupling (CCPDv3→CLICpix)

25

mvicente@cern.ch 31/08/16

JERI

Effect on Y-direction Misalignment Cross Pixel Coupling (CCPDv3→CLICpix)

mvicente@cern.ch 31/08/16

Effect on Y-direction Misalignment Cross Pixel Coupling (CCPDv3→CLICpix)

mvicente@cern.ch 31/08/16

New Chips CLICpix2 and C3PD

- Improved chips based on previous CLICpix and CCPDv3
 - Bigger pixel matrix
 - Different pixel electronics
 - Guard ring around HV-CMOS pixels pads


```
31/08/16
```

CLICpix2/C3PD Simulation Guard Ring

- 29
 - With Guard Ring
 - Selected solid = Aluminium; Terminal/Grounded
 - □ Without Guard Ring
 - Selected solid = Silica Glass; Dielectric Coefficient = 2.09

Results

clc

Results

32

Capacitive Coupling to other metals

Coupling of the central pixel in the C3PD chip with the Guard Ring and M6+M5

Conclusions

and next steps

- Maxwell Capacitance Matrix
 - Figure of merit of coupling between chips
- Chips 3D model using SolidWorks
 - CLICpix + CCPDv3; CLICpix2 + C3PD

- A nice simulation software suite
- Definition of terminals and metal layers + meshing
- Results
 - Coupling between the pixels
 - Effect of Guard-Rings around pixel pads
 - Misalignment effects

CCPDv3 shifting from -13 to 13 um away from ideal alignment. Color scale shows the electric field norm.

Conclusions

and next steps

Next Steps

- Analyze the misalignment effect in data from test beam
- Create a digitizer for HV-CMOS sensors
 - Simulate, using TCAD/AllPix/Geant4, the readout chain
 - Optimize pixel pads geometry; induced charge sharing effects and etc...

Results without Guard Ring – Electric Field

With Guard Ring

Without Guard Ring

-0.06

mvicente@cern.ch

Objective

37

Calculate the capacitance between pixels in the CLICpix2 and C3PD chips

- Maxwell Capacitance Matrix
 - E. Di Lorenzo, FastFieldSolvers, The Maxwell Capacitance Matrix, White Paper WP110301

Capacitance

and its geometrical nature (quantitatively)

arXiv:physics/0702253

$$Q_{i} = \oint_{S_{i}} \sigma_{i} \, dS = -\varepsilon_{0} \oint_{S_{i}} \nabla \phi \cdot \mathbf{n}_{i} \, dS^{(1)}, \quad \sigma_{i} = \varepsilon_{0} \mathbf{E} \cdot \mathbf{n}_{i} = -\varepsilon_{0} \nabla \phi \cdot \mathbf{n}_{i}$$
$$\phi(S_{i}) = \varphi_{i}, \quad \phi = \sum_{j=1}^{N+1} \varphi_{j} f_{j}^{(2)}, \quad f_{j}(S_{i}) = \delta_{ij}$$

Potential depends only on the chosen surface! Applying grad in (2) and replacing it in (1)

$$Q_{i} = -\epsilon_{0} \sum_{j=1}^{N+1} \oint_{S_{i}} \varphi_{i} f_{j} \cdot \mathbf{n}_{i} \, dS = \sum_{j=1}^{N+1} C_{ij} \varphi_{j}$$
$$C_{ij} \equiv -\varepsilon_{0} \oint_{S_{i}} \nabla f_{j} \cdot \mathbf{n}_{i} \, dS$$

 $S_T = S_1 + \ldots + S_N + S_{N+1}$

Simulation COMSOL Multiphysics®

CERN

- 39
 - Simulation Tool for Electrical, Mechanical, Fluid Flow, and Chemical Applications
 - Arbitrarily include equations describing a material property, boundary, source or sink term, or a unique set of partial differential equations

Chips Alignment Two proposals

CERN

- Two alignment marks on the two sides of the chips
 - two different implementations of the alignment

Geometry

Empty space = Glue Layer ($2\mu m$)

Geometry

Simulation COMSOL Multiphysics[®] - Terminals

Results Capacitance Matrix

COMSOL path: Results → Derived Values → Global Matrix Evaluation → Electrostatics → Terminals → Capacitance

Table 10 Pro	gress Lo	g															- # >
8.85 e-12 AUTO																	
Capacitance (fF))																
16.886	-0.39750	-1.5686E-8	-0.0014967	-5.7629E-5	-2.0997E-9	-4.2845E-10	-1.0636E-10	-7.7491E-13	-2.6928	-0.014929	-9.7037E-8	-0.0025388	-6.8890E-5	-1.2688E-8	-2.7128E-8	-4.9638E-9	-3.4026E-11
-0.39750	17.667	-0.39743	-5.7600E-5	-0.0014657	-5.7607E-5	-6.2144E-11	-3.5882E-10	-1.0650E-10	-0.016202	-2.6776	-0.014920	-3.2961E-5	-0.0024986	-6.8794E-5	-3.5494E-9	-2.3491E-8	-4.9723E-9
-1.5686E-8	-0.39743	17.327	-2.0964E-9	-5.7615E-5	-0.0015754	-4.5234E-13	-6.1819E-11	-4.4904E-10	-1.0170E-7	-0.016198	-2.6927	-9.3946E-9	-3.2873E-5	-0.0025520	-2.4359E-11	-3.5197E-9	-2.8074E-8
-0.0014967	-5.7600E-5	-2.0965E-9	16.887	-0.39736	-1.2395E-8	-0.0024343	-1.5725E-4	-3.3025E-9	-0.0025387	-6.8857E-5	-1.2669E-8	-2.6898	-0.014880	-8.5992E-8	-0.0030361	-5.0761E-5	-1.0888E-8
-5.7630E-5	-0.0014657	-5.7616E-5	-0.39736	17.667	-0.39730	-1.5718E-4	-0.0022368	-1.5725E-4	-3.2963E-5	-0.0024987	-6.8847E-5	-0.016120	-2.6746	-0.014876	-8.2951E-5	-0.0029634	-5.0759E-5
-2.0996E-9	-5.7607E-5	-0.0015754	-1.2395E-8	-0.39730	17.329	-3.3007E-9	-1.5728E-4	-0.0023546	-9.4453E-9	-3.2961E-5	-0.0025536	-8.7869E-8	-0.016122	-2.6898	-1.4377E-8	-8.3040E-5	-0.0030222
-4.2847E-10	-6.2143E-11	-4.5311E-13	-0.0024343	-1.5718E-4	-3.3008E-9	16.881	-0.39729	-1.4502E-8	-3.3869E-8	-4.9689E-9	-3.1233E-11	-0.0030362	-5.0752E-5	-1.0896E-8	-2.6923	-0.014942	-9.8739E-8
-1.0637E-10	-3.5882E-10	-6.1818E-11	-1.5725E-4	-0.0022367	-1.5728E-4	-0.39729	17.665	-0.39736	-5.4210E-9	-2.8627E-8	-4.9704E-9	-8.2976E-5	-0.0029644	-5.0760E-5	-0.016151	-2.6769	-0.014938
-7.7481E-13	-1.0650E-10	-4.4904E-10	-3.3025E-9	-1.5725E-4	-0.0023547	-1.4502E-8	-0.39736	17.328	-3.8498E-11	-5.4247E-9	-3.3749E-8	-1.4350E-8	-8.3054E-5	-0.0030232	-9.7434E-8	-0.016157	-2.6923
-2.6928	-0.016202	-1.0169E-7	-0.0025386	-3.2962E-5	-9.4447E-9	-3.3868E-8	-5.4207E-9	-3.8488E-11	7.0207	-0.030083	-2.9487E-6	-0.033500	-6.8671E-4	-3.6036E-7	-2.9691E-6	-3.6108E-7	-1.5354E-9
-0.014929	-2.6776	-0.016198	-6.8857E-5	-0.0024986	-3.2961E-5	-4.9687E-9	-2.8627E-8	-5.4247E-9	-0.030083	7.0506	-0.030060	-6.8650E-4	-0.032827	-6.8641E-4	-3.6184E-7	-2.6066E-6	-3.6166E-7
-9.7041E-8	-0.014920	-2.6927	-1.2670E-8	-6.8845E-5	-0.0025535	-3.1196E-11	-4.9703E-9	-3.3749E-8	-2.9487E-6	-0.030061	6.9887	-3.6012E-7	-6.8610E-4	-0.033467	-1.5370E-9	-3.6180E-7	-2.9708E-6
-0.0025387	-3.2961E-5	-9.3938E-9	-2.6898	-0.016120	-8.7866E-8	-0.0030362	-8.2977E-5	-1.4350E-8	-0.033500	-6.8650E-4	-3.6010E-7	7.0538	-0.029399	-2.5881E-6	-0.033180	-6.8078E-4	-3.5927E-7
-6.8890E-5	-0.0024987	-3.2873E-5	-0.014880	-2.6746	-0.016122	-5.0752E-5	-0.0029644	-8.3054E-5	-6.8671E-4	-0.032827	-6.8610E-4	-0.029399	7.0835	-0.029376	-6.8142E-4	-0.032472	-6.8087E-4
-1.2689E-8	-6.8793E-5	-0.0025521	-8.5996E-8	-0.014876	-2.6898	-1.0897E-8	-5.0760E-5	-0.0030231	-3.6036E-7	-6.8641E-4	-0.033467	-2.5881E-6	-0.029376	7.0533	-3.5956E-7	-6.8097E-4	-0.033181
-2.7129E-8	-3.5492E-9	-2.4360E-11	-0.0030360	-8.2949E-5	-1.4376E-8	-2.6923	-0.016151	-9.7434E-8	-2.9692E-6	-3.6183E-7	-1.5373E-9	-0.033180	-6.8142E-4	-3.5954E-7	7.0201	-0.030088	-2.9502E-6
-4.9640E-9	-2.3491E-8	-3.5195E-9	-5.0761E-5	-0.0029632	-8.3040E-5	-0.014942	-2.6769	-0.016157	-3.6109E-7	-2.6066E-6	-3.6180E-7	-6.8079E-4	-0.032472	-6.8096E-4	-0.030088	7.0499	-0.030073
-3.4016E-11	-4.9721E-9	-2.8072E-8	-1.0888E-8	-5.0758E-5	-0.0030223	-9.8737E-8	-0.014938	-2.6923	-1.5355E-9	-3.6165E-7	-2.9707E-6	-3.5927E-7	-6.8087E-4	-0.033181	-2.9502E-6	-0.030073	7.0196

Results Capacitance Matrix

COMSOL path: Results → Derived Values → Global Matrix Evaluation → Electrostatics → Terminals → Capacitance

Table 10 Progress Log																		
🙀 👫 💵 💱 o.s. 🔪 🗓 🖽 📾 🗁 🏛 🗸										Terminal $14 = Middle C3PD pixel$								
Capacitance (fF)																	
16.886	-0.39750	-1.5686E-8	-0.0014967	-5.7629E-5	-2.0997E-9	-4.2845E-10	-1.0636E-10	-7.7491E-13	-2.6928	-0.014929	-9.7037E-8	-0.0025388	-6.8890E-5	-1.2688E-8	-2.7128E-8	-4.9638E-9	-3.4026E-11	
-0.39750	17.667	-0.39743	-5.7600E-5	-0.0014657	-5.7607E-5	-6.2144E-11	-3.5882E-10	-1.0650E-10	-0.016202	-2.6776	-0.014920	-3.2961E-5	-0.0024986	-6.8794E-5	-3.5494E-9	-2.3491E-8	-4.9723E-9	
-1.5686E-8	-0.39743								-0.016198	-2.6927	-9.3946E-9	-3.2873E-5	-0.0025520	-2.4359E-11	-3.5197E-9	-2.8074E-8		
-0.0014967	-5.7600E-5								-6.8857E-5	-1.2669E-8	-2.6898	-0.014880	-8.5992E-8	-0.0030361	-5.0761E-5	-1.0888E-8		
-5.7630E-5	-0.0014657				\sim				-0.0024987	-6.8847E-5	-0.016120	-2.6746	-0.014876	-8.2951E-5	-0.0029634	-5.0759E-5		
-2.0996E-9	-5.7607E-5								-3.2961E-5	-0.0025536	-8.7869E-8	-0.016122	-2.6898	-1.4377E-8	-8.3040E-5	-0.0030222		
-4.2847E-10	-6.2143E-1				27					-4.9689E-9	-3.1233E-11	-0.0030362	-5.0752E-5	-1.0896E-8	-2.6923	-0.014942	-9.8739E-8	
-1.0637E-10	-3.5882E-1									-2.8627E-8	-4.9704E-9	-8.2976E-5	-0.0029644	-5.0760E-5	-0.016151	-2.6769	-0.014938	
-7.7481E-13	-1.0650E-1									-5.4247E-9	-3.3749E-8	-1.4350E-8	-8.3054E-5	-0.0030232	-9.7434E-8	-0.016157	-2.6923	
-2.6928	-0.016202			\sim						-0.030083	-2.9487E-6	-0.033500	-6.8671E-4	-3.6036E-7	-2.9691E-6	-3.6108E-7	-1.5354E-9	
-0.014929	-2.6776					\leq				7.0506	-0.030060	-6.8650E-4	-0.032827	-6.8641E-4	-3.6184E-7	-2.6066E-6	-3.6166E-7	
-9.7041E-8	-0.014920							•		-0.030061	6.9887	-3.6012E-7	-6.8610E-4	-0.033467	-1.5370E-9	-3.6180E-7	-2.9708E-6	
-0.0025387	-3.2961E-5									-6.8650E-4	-3.6010E-7	7.0538	-0.029399	-2.5881E-6	-0.033180	-6.8078E-4	-3.5927E-7	
-6.8890E-5	-0.0024987									-0.032827	-6.8610E-4	-0.029399	7.0835	-0.029376	-6.8142E-4	-0.032472	-6.8087E-4	
-1.2689E-8	-6.8793E-5	-0.0025521	-0.33905-0	-0.014670	-2.0090	-1.009/E-0	-3.0700E-3	-0.0050251	-5.0050E-7	-6.8641E-4	-0.033467	-2.5881E-6	-0.029376	7.0533	-3.5956E-7	-6.8097E-4	-0.033181	
-2.7129E-8	-3.5492E-9	-2.4360E-11	-0.0030360	-8.2949E-5	-1.4376E-8	-2.6923	-0.016151	-9.7434E-8	-2.9692E-6	-3.6183E-7	-1.5373E-9	-0.033180	-6.8142E-4	-3.5954E-7	7.0201	-0.030088	-2.9502E-6	
-4.9640E-9	-2.3491E-8	-3.5195E-9	-5.0761E-5	-0.0029632	-8.3040E-5	-0.014942	-2.6769	-0.016157	-3.6109E-7	-2.6066E-6	-3.6180E-7	-6.8079E-4	-0.032472	-6.8096E-4	-0.030088	7.0499	-0.030073	
-3.4016E-11	-4.9721E-9	-2.8072E-8	-1.0888E-8	-5.0758E-5	-0.0030223	-9.8737E-8	-0.014938	-2.6923	-1.5355E-9	-3.6165E-7	-2.9707E-6	-3.5927E-7	-6.8087E-4	-0.033181	-2.9502E-6	-0.030073	7.0196	

Misalignment Scan (Via direction) Electric field norm between pixels

electric field norm. Color scale shows the

Misalignment Scan (Via direction) Electric field norm between pixels

Animated GIF - CCPDv3 shifting from -13 to 13 um away from ideal alignment. Color scale shows the electric field norm.

