Top electroweak couplings

G. Durieux (DESY), I. García, <u>M. Perelló Roselló</u>, M. Vos (IFIC - U. Valencia/CSIC), C. Zhang (BNL)

Acknowledging input/contributions from:

M. Boronat, J. Fuster, P. Gomis, E. Ros (IFIC - U. Valencia/CSIC)

R. Pöschl, F. Richard (Orsay, LAL)

P. Roloff, R. Ström (CERN)

Introduction

- Some models BSM have strong couplings to the top quark which provide a great sensitivity to high energy scales.
- ttZ and ttGamma vertices directly accessible in an electronpositron collider. Two approaches for top quark couplings study:
 - Form-factors scheme.
 - Effective operators from an EFT.

Form-factors status

Assume production is dominated by SM and NP scale is beyond direct reach.

3

Effective field theory (EFT)

Alternative to form-factors: describe BSM effect through effective operators.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

- We can **connect different physics processes with the same operators** (for instance the tt production and the top quark decay share some operators).
- These measurements can be done in the LHC too, so we can compare LHC and LC measurements easily.
- An effective theory allows the **study of contact interactions**.

EFT: dimension-6 operators

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

Gauthier Durieux in TopLC 2016 (KEK):

Use: - SM fields (fermion gauge eigenstates: q, u, d, 1, e) - SM symmetries (gauge and Lorentz)

EFT: 2-fermion (vertex) operators

Alternative to form-factors: Integrate out explicit mediators and describe BSM effect through effective D6 operators.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

Operators acting on EW vertices ("2-fermion" operators).

$$\frac{1}{i}$$
ttZ/tty vertices

$$O_{\varphi t} = i\frac{1}{2}y_{t}^{2}\left(\varphi^{\dagger}\overleftrightarrow{D}_{\mu}\varphi\right)(\bar{t}\gamma^{\mu}t)$$

$$D_{\varphi Q}^{(1)} = i\frac{1}{2}y_{t}^{2}\left(\varphi^{\dagger}\overleftrightarrow{D}_{\mu}\varphi\right)(\bar{q}\gamma^{\mu}q)$$

$$O_{\varphi Q}^{(1)} = i\frac{1}{2}y_{t}^{2}\left(\varphi^{\dagger}\overleftrightarrow{D}_{\mu}\varphi\right)(\bar{q}\gamma^{\mu}q)$$

$$O_{\varphi \varphi} = i\frac{1}{2}y_{t}y_{b}\left(\tilde{\varphi}^{\dagger}\overleftrightarrow{D}_{\mu}\varphi\right)(\bar{t}\gamma^{\mu}b)$$

$$O_{\varphi Q}^{(3)} = i\frac{1}{2}y_{t}^{2}\left(\varphi^{\dagger}\overleftarrow{D}_{\mu}\varphi\right)(\bar{q}\gamma^{\mu}\tau^{I}q)$$

$$O_{\xi B} = y_{t}g_{Y}\left(\bar{q}\sigma^{\mu\nu}t\right)\widetilde{\varphi}B_{\mu\nu}$$

$$O_{tW} = y_{t}g_{w}\left(\bar{q}\sigma^{\mu\nu}\tau^{I}t\right)\widetilde{\varphi}W_{\mu\nu}^{I}$$

Form-factors vs. effective operators

Operators acting on ttZ, tt γ vertices ("2-fermion" operators) can be transformed into the form-factors scheme:

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Transformation between effective operators and form-factors:

$$\begin{array}{lll} F_{1,V}^{Z} - F_{1,V}^{Z,SM} &=& \frac{1}{2} \left(\underbrace{C_{\varphi Q}^{(3)} - C_{\varphi Q}^{(1)} - C_{\varphi q}}_{Q \varphi Q} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underbrace{C_{\varphi q}^{V}}_{Q} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} & \text{We can change to an alternative basis} \\ F_{1,A}^{Z} - F_{1,A}^{Z,SM} &=& \frac{1}{2} \left(\underbrace{-C_{\varphi Q}^{(3)} + C_{\varphi Q}^{(1)} - C_{\varphi q}}_{Q \varphi Q} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underbrace{C_{\varphi q}^{A}}_{\Lambda^{2} s_{W} c_{W}} & \text{Vector/Axial - Vector} \\ F_{2,V}^{Z} &=& \left(\underbrace{\operatorname{Re}\{C_{tW}\}c_{W}^{2} - \operatorname{Re}\{C_{tB}\}s_{W}^{2}}_{Q} \right) \frac{4m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = \operatorname{Re}\{\underbrace{C_{uZ}}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ F_{2,V}^{\gamma} &=& \left(\underbrace{\operatorname{Re}\{C_{tW}\} + \operatorname{Re}\{C_{tB}\}}_{Q} \right) \frac{4m_{t}^{2}}{\Lambda^{2}} = \operatorname{Re}\{\underbrace{C_{uA}}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ F_{2,V}^{\gamma} &=& \left(\underbrace{\operatorname{Re}\{C_{tW}\} + \operatorname{Re}\{C_{tB}\}}_{Q} \right) \frac{4m_{t}^{2}}{\Lambda^{2}} = \operatorname{Re}\{\underbrace{C_{uA}}\}\frac{4m_{t}^{2}}{\Lambda^{2}} \\ \left[F_{2,A}^{Z}, F_{2,A}^{\gamma} \right] \propto & [\operatorname{Im}\{C_{tW}\}, \operatorname{Im}\{C_{tB}\}] \end{array}$$

EFT: 4-fermion (contact interaction) operators

Other group of D6 effective operators collect the e-e+tt contact interaction ("4-fermion" operators) :

e+	∕t	(ĒL)(ĒL)	$egin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{pmatrix} l\gamma_{\mu}l \end{pmatrix} (\bar{q}\gamma^{\mu}q) \\ \left(\bar{l}\gamma_{\mu}\tau^{I}l \right) \left(\bar{q}\gamma^{\mu}\tau^{I}q \right) $
		(R R)(R R)	\mathcal{O}_{eu}	$(\bar{e}\gamma_{\mu}e)\left(\bar{u}\gamma^{\mu}u\right)$
	k 1	(Ā R)(LL)	\mathcal{O}_{eq}	$(\bar{e}\gamma_{\mu}e)(\bar{q}\gamma^{\mu}q)$
e-		(L L)(R R)	\mathcal{O}_{lu}	$\left(\bar{l}\gamma_{\mu}l\right)\left(\bar{u}\gamma^{\mu}u\right)$
(ĒR)(ĒL) & ((ĒL)(LR)	$\mathcal{O}_{lequ}^{(1)}$	$\left(\bar{l}e\right)\epsilon\left(\bar{q}u\right)$
			$\mathcal{O}_{lequ}^{(3)}$	$\left(\bar{l}\sigma_{\mu\nu}e\right)\epsilon\left(\bar{q}\sigma^{\mu\nu}u\right)$

Conversion to V/A - V basis:

$$C_{lq}^{V} \equiv C_{lu} + C_{lq}^{(1)} - C_{lq}^{(3)} \qquad C_{eq}^{V} \equiv C_{eu} + C_{eq} \qquad C_{lequ}^{(1)}$$
$$C_{lq}^{A} \equiv C_{lu} - C_{lq}^{(1)} + C_{lq}^{(3)} \qquad C_{eq}^{A} \equiv C_{eu} - C_{eq} \qquad C_{lequ}^{(3)}$$

multi-TeV operation

MC simulation for effective operators parameterisation: MG5_aMC@NLO with an EW Effective Theory model (*courtesy of C. Zhang, G. Durieux, et al.*).

$e^-e^+ \rightarrow t \bar{t}$ LO production at...

	Full - Simulation		Temporary scaling		
	380 GeV	500 GeV	1 TeV	1.4 TeV	3 TeV
	(-0.8, 0)	(-0.8, +0.3)	(-0.8, +0.2)	(-0.8, 0)	(-0.8, 0)
Poi (e-, e+)	(+0.8, 0)	(+0.8, -0.3)	(+0.8, -0.2)	(+0.8, 0)	(+0.8, 0)
Cross-section (pb)	0,792	0,930	0,256	0,113	0,025
Lumi (fb-1)	500	500	1000	1500	3000

Parameterisation of different observables through effective operators...

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{(\Lambda/1 \text{TeV})^2} \sigma_i^{(1)} + \sum_{i \le j} \frac{C_i C_j}{(\Lambda/1 \text{TeV})^4} \sigma_{ij}^{(2)}$$

Cross-section sensitivity

Complementarity

Objective: find different observables which provide an ideal complementarity between operators.

Cross-section vs asymmetry

Axial and vector operators can be disentangled by using the cross-section and the forward-backward asymmetry in the fit.

The power of polarisation

Only with one observable, the initial state polarisation provides complementary constraints.

Fraction of right-handed tops

In the rest system of the t quark, the angle of the lepton from the W boson is distributed like (motivation from 1307.8102v1): Fraction of The angle θ hel is right-handed tops. measured in the rest frame of the t quark with $\cos \theta_{hel}$ $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{hel}} = \frac{1 + \lambda_t \cos\theta_{hel}}{2} = \frac{1}{2} + \frac{$ the z-axis defined by the direction of motion of the t quark in the laboratory. دي 0.5 0 S₀ e_ GeV, P(e,e⁺)=(-0.8, +0.3 √s = 500 GeV, P A_{FB}, 0.4 0.4 √s = 500 GeV, **P(e⁻,e⁺)=(-0.8, +0,3**) V, P(e,e⁺)=(-0.8, +0.3) Λ,, 0.3 0.2 0.2 **0.1** 0 0 -0.1 -0.2 -0.2 -0.3 -0.4 -0.4 0.2 -0.20.4 -0.4 0 0.1 0.2 0.3 0.4 C_{eq}^{A} C_{uA}

Good complementarity with Afb in the <u>4-fermion sector</u>.

Global Fit: CLIC program

Globat fit in the CLIC energy program: 380 GeV + 1.4 TeV + 3 TeV

- We find consistency between the EFT scheme and the form-factor scheme (fit described in arXiv:1505.06020v2).
- We are looking for a perfect agreement between the individual fit (best case) and the marginalized fit (more realistic case).

Limits on BSM models

- The effective field theory can be matched to specific BSM models. Different models will lead to different combination of operator coefficients.
- If evidence of any nonzero coefficient is observed, studying the pattern of the deviation will give us hints on high scale physics.

Vector-like quarks [hep-ph/0007316]:

Current LHC bound: MU > 700 - 800 GeV (regardless of λ) $MU / \lambda > 3 \text{ TeV}$ (indv fit) $MU / \lambda > 1.4 \text{ TeV}$ (marg. fit)

R-S models with the SM fermion and gauge fields propagating in the extra dimension - **KK modes [0709.0007]**:

Mkk > 13 TeV (indv fit) Mkk > 8 TeV (marg. fit)

Work in progress...

- (NOW in progress) Impact at NLO:
 - First results show the same sensitivity at LO and NLO in almost all the operators.
 - New operators appear (those concerning gluons). In principle they can be constrained better at the LHC.

Gauthier Durieux in TopLC 2016 (KEK):

MadGraph for NLO QCD in the effective field theory $\stackrel{\sim}{\leftarrow}$

 $\Lambda = 1$ TeV, $\Lambda^{-2,-4}$ terms, $m_t = 172.5$ GeV, unpolarised beams, α_s scale

- Study of the process $e^-e^+ \rightarrow W^+bW^-\bar{b}$.
 - New operators appear (those concerning the Wtb vertex).
 - First results below ttbar threshold show low sensitivity to new Wtb operators.

Top reconstruction at high energies

Collaboration with I.Garcia, P. Roloff, R. Ström and M.Vos.

Reconstruction Strategy

Trimming technique: remove background. Consists in the inclusive reconstruction of subjets inside the big boosted top jet.

+

Top tagging: distinguish tops from QCD background (see R. Ström talk later in this session).

Studied Samples

6 fermion final-state samples CLIC@1.4TeV P(e-) = -80%

Marlin processors under development

Trimming technique

Summary

- We have two alternatives for the study of top quark couplings: formfactors and effective operators.
- Complementarity between different observables at different energies allow us to decrease operators correlations providing a better χ² fit.
- First results show low uncertainties in the operators coefficients and a consistency between both schemes.
- We can put limits on different BSM models through the EFT operators.
- We need new top reconstruction techniques at high energies (under development).

٠

An EFT analysis

Gauthier Durieux in TopLC 2016 (KEK):

- Go global!
 - NP can generate several operators at a high scale
- (Renormalisation Group) RG running down to low scales can mix them with others
 - Operators are re-express as combinations of others to form a basis
 - Face interferences!

$$\sigma_{e^+e^- \to t\bar{t}}^{\sqrt{a}=500 \text{ GeV}} \left[\text{fb}\right] = +568 + \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 \begin{pmatrix} C_{eq}^{A} \\ C_{eq}^{A} \\ C_{eq}^{V} \\$$

- · Combine observables!
- Offer yourself NⁿLO!

Assume production is dominated by SM and NP scale is beyond direct reach.

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Form-factors status: CPV

$$\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Observables:

$$O_{+}^{Re} = \left(\hat{q}_{+}^{*} \times \hat{q}_{\bar{X}}\right) \cdot \hat{e}_{+}$$
$$O_{+}^{Im} = -\left[1 + \left(\frac{\sqrt{s}}{2m_{t}} - 1\right)\left(\hat{q}_{\bar{X}} \cdot \hat{e}_{+}\right)^{2}\right]\hat{q}_{+}^{*} \cdot \hat{q}_{\bar{X}} + \frac{\sqrt{s}}{2m_{t}}\hat{q}_{\bar{X}} \cdot \hat{e}_{+}\hat{q}_{+}^{*} \cdot \hat{e}_{+}$$

Paper of LC potential in the CPV sector in preparation (IFIC-LAL collaboration)

Quantity	$Re[F_{2A}^{\gamma}]$	$Re[F_{2A}^Z]$	$Im[F_{2A}^{\gamma}]$	$Im[F_{2A}^Z]$
SM value at tree level	0	0	0	0
LHC	0.12	0.25	0.12	0.25
TESLA TDR	0.007	0.008	0.008	0.010
ILC $@500 \text{ GeV}$	0.007	0.011	0.007	0.012
CLIC@380 GeV	0.009	0.013	0.008	0.016

Global Fit

Globat fit in the energy program: 500 GeV + 3 TeV + ...

+ 1.4 TeV?

4-fermion: Improvement of 5%

Vertices: Improvement of 10 - 14%

+ 380 GeV?

Vertices:

Improvement of 10 - 13%

Better to add high energy points

Trimming technique: energy threshold selection

Trimming threshold impact

- Durham algorithm on smaller jets.
- R for subjets = 0.2

