Python bindings for C++
via PyRoot

User experience from PyCool in COOL
(and from PyCoral in CORAL)

Andrea Valassi
(CERN IT-DI-LCG)

2"d CERN Developers Forum — 30" May 2016
(~rerun of the talk given at the ROOT Saas-Fee Workshop in September 2015)

C\E{"W A. Valassi — Python bindings for C++ in PyCool 2nd CERN Dev Forum — 30" May 2016 1

N,

Outline

Introduction to CORAL, COOL and PyCool
— Who uses PyCool and the relationship to ROOT

Implementation of PyCool over time
— ROOT5 (and before) — gcexml, no c++11
— ROQOT®6 — clang/cling (JIT in 6.02, ORCJIT in 6.04)

A few comments and comparisons to alternatives

 Conclusions

‘{E/RW A. Valassi — Python bindings for C++ in PyCool 2nd CERN Dev Forum — 30" May 2016

N,

CORAL, COOL and PyCool

« COOL: a set of libraries and tools for the handling of

the time variation and versioning of “conditions data”

— Used by ATLAS and LHCDb throughout LHC data taking
 e.g. detector calibration for Sep 2015 computed with latest algorithm

« CORAL: a generic relational database access layer

— Used by ATLAS, CMS and LHCb and internally by COOL

« Conditions data, trigger configuration data, geometry data...
« Main entry point to physics data in Oracle (directly or via Frontier)

« Both COOL and CORAL are written in C++

— Python bindings also exist: PyCool (2005), PyCoral (2006)
— 10-year old products maintained through LHC data taking

‘{E{"W A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016 3

N,

COOL data model

Each COOL conditions object has
— Metadata (system-controlled)
« Data item identifier

* Interval-of-validity [since, until]
» Version information
— Data “payload” (user-defined) ?

* Physics values (temperatures,
calibration parameters...) —

« Separate columns ora CLOB B& | . iossy

4 item

¥
Version
Production version:
VIET: vl bor Tell, «F Bor i3=Telf, w3 dor (BTabh vi lox T=il
WL Al 1 Por Tk, o2 for =T, v dor Tl
RICH. v ewarywhare
ECAL: vi sverywhers

Time

Figure 1 The thres axes for identilying uniquely esch daia Hem in the condibion database

COOL provides a technology-independent C++ API to handle the time
variation and versioning of the conditions data of the LHC experiments.
This is implemented using relational databases, based on CORAL.

\

W A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016

N,

Component architecture

Python code
of LHC experiments

Within COOL, ROOT is used
(only) for the Pythonization
of the public C++ API

C++ code of LHC experiments

into PyCool PyCool
++
ROOT COOL Ci+ AP use CORAL
: . ‘ rach _ 4B directly
COOL libraries [
CORAL C++ API (DB technology independent)
: : MySQLAccess
XMLLookupSvc OracleAccess FrontierAccess CoralAccess SQLiteAccess (CORAL Plugin)
XMLAuthSvc (CORAL Plugin) (CORAL Plugin) (CORAL Plugin) (CORAL Plugin)
(CORAL Plugins) . _ MySQL C API
OCI C API Frontier API coral protocol SQLite C API
2N 2N 2N @
ocl @ http http coral coral -
@ > ‘ ’ : MySQL
DB lookup XML . Sauid CORAL SQLite
- . Es | (Wegilche) proxy o DB (file)
Authentication xmL (cache) (Nolonger used)
(flle) ’ CMS, | L‘EICb
a http @ coral N o N
@ CM%’ %’é Frontier
Server CORAL plugins interface to 5 back-ends
Ll sz CORAL - Oracle, SQLite, MySQL (commercial)
> server - Frontier (maintained by FNAL)
ocCl - CoralServer (maintained in CORAL)

C@
\

N,

2"d CERN Dev Forum — 30" May 2016

A. Valassi — Python bindings for C++ in PyCool

PyCool usage — inside ATLAS

* Most ATLAS ConditionsDB tools use Python and PyCool:
— AtlCoolTag (and other tools for “tagging” condition data versions)
— AtlCoolConsole (to look at “raw” conditions data in the database)
— CoolCherryPy (RESTful interface for both read and write operations)
— AtlIRunQuery (for online operations)
— COMA (conditions metadata manager)
— CoolLumiUtilities (for luminosity management)

* Relevance of ROOT - constraints on COOL release schedule
— COOL2 vs COOL3 (Boost vs c++11) in ROOT 5 vs ROOT 6
— Workarounds for exception handling in ROOT 6.02 vs ROOT 6.04
— See details in the following slides

\w A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016 6

N,

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/CoolTagTool
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/ConditionsTagProcedure
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/AtlCoolConsole
https://twiki.cern.ch/twiki/bin/view/AtlasComputing/CoolCherryPy
https://atlas-runquery.cern.ch/
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/ConditionsMetadata
https://svnweb.cern.ch/trac/atlasoff/browser/Database/CoolLumiUtilities/trunk/python

PyCool usage — by the COOL team

 PyCool is also used internally by the COOL team for tests
— Performance test suite for COOL/Oracle queries is fully Python based

— Functional test suite for COOL includes both Python and C++ tests
« Some functionalities are only tested in Python with no C++ equivalent

— Python is a great language for testing and interactive prototyping

* Relevance of / for ROOT — PyCool tests also test PyROOT!

— Extensive feedback to (and from) the ROOT team over the years

— Especially intense testing during the move to ROOT6
« Regular reports about PyCool at the weekly ROOT6 planning meetings
* Many issues in PyROOT and cppyy detected through the PyCool tests

\w A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016

N,

PyCoral — for comparison

« PyCoral provides Python bindings for the CORAL C++ code

— Does essentially the same as PyCool for COOL
« Developed around the same time in what was then a separate project

— Direct CPython implementation, without going via ROOT

« PyCoral was Iinitially developed on request by the experiments
— Unclear if/lhow this is still used by any experiments
— Some of the same features are provided by SQLAIchemy

« PyCoral is still used by the CORAL team

— Functional test suite for CORAL includes both Python and C++ tests
« Some functionalities are only tested in Python with no C++ equivalent

— Python is a great language for testing and interactive prototyping

‘{E/RW A. Valassi — Python bindings for C++ in PyCool 2nd CERN Dev Forum — 30" May 2016

N,

11 years of PyCool evolution

LHC startup Saas Fee Workshop

005 | 2o0s | ooor | ouoo]] zovo | zoto] oo | ootz | eois | zore] eor
A A A f A A A

Dec 2013 -COOL 2.9.0
PyCintex + Reflex Jul 2014 — COOL 3.0.0 (ROOT 6.00.02)
(ROOT 5.34.13) PyCool moves to ROOT6 (JIT)
Start ROOTS6 transition cppyy + cling JIT (exceptions not ok)
(test cppyy)

Jan 2015 - COOL 3.0.2 (ROOT 6.02.03)
Jan 2006 — COOL 1.2.7 PyCool work arounds for C++ exceptions

PyCool now uses ROOT
PyCintex + Reflex
(ROOT 5.08.00)
SEAL/ROQOT merger

Jul 2015 - COOL 3.0.4 (ROOT 6.04.02)
Disable PyCool patch for C++ exceptions
cppyy + cling ORCJIT (exceptions ok)

Oct 2015 - COOL 3.1.0 (ROOT 6.04.06)

Aug 2005 -COOL 1.2.3 Start cleaning up - remove libPyCool.so

First PyCool release
pylcgdict + Reflection Jan 2016 — COOL 3.1.2 (ROOT 6.06.00)
(SEAL 1.7.1) Move to PYROOT 6.06: PyCool segfaults

Apr 2005 - COOL 1.0.0
First COOL release

Mar 2016 — COOL 3.1.3 (ROOT 6.06.02)
All issues in 6.06 fixed for PyCool (Linux)

May 2016 — COOL 3.1.4 (ROOT 6.06.??) — Port to Mac 10.11
Exceptions not ok - Re-enable PyCool workarounds on Mac

Waiting for ROOT 6.08 on Mac...

\w A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016

N,

What i1s/was in PyCool?

[i.e. what could it take to Pythonize your C++ API? not much!]

* A Python module (e.g. to instrument special classes)
— Handle C++ template methods and C++/Python types...
— Handle C++ shared pointers and C++ references...
— Translate C++ iterators to Python iterators...
— Most of this is no longer needed with the latest ROOT

« Aset of C++ helper methods

— Hooks to selected internal C++ API calls
— Workarounds for Python binding issues (e.g. ROOT 6.02)

* Plus the machinery to build/bootstrap, some tests...

Some of the above is likely to disappear eventually
— Things will be easier when ROOT <604 is no longer used

< 6.087? (see recent Mac issues)

‘{E{"W A. Valassi — Python bindings for C++ in PyCool 2nd CERN Dev Forum — 30" May 2016 10

N,

PyCool using ROOT5

* Binding C++/Python uses dictionaries as done in I/O

— C++ header parsing: at build time (using gccxml)
« parse headers to generate .cpp dictionaries from .h
« compile .cpp dictionaries into .so

— Python bootstrapping: use rootmap to load .so of PyCool
* “import PyCintex” (loads libPyROOT.so, bootstraps ROOT)

» “PyCintex.gbl.cool.IDatabaseSvc” (symbol lookup in the rootmap)
— this loads the Python bindings for C++ from libPyCoolDict.so
— this in turn loads the COOL C++ libraries (libCoolApplication.so)

\w A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016 11

N,

PyCool using ROOT6

 Dictionaries are only needed for I/O, not for Python!

— C++ header parsing: at run time (using clang JIT)
* no action needed at build time

— Python bootstrapping: load .h of PyCool directly!
* “import cppyy” (loads libPyROOT.so, bootstraps ROOT)

* “cppyy.gbl.gSystem.Load('libCoolApplication.so')”
— explicitly loads the COOL C++ libraries (libCoolApplication.so)

» “cppyy.gbl.ginterpreter.Declare('#include PyCool headers.h’)”
— this parses the headers and generates the Python bindings for C++

* Now this looks so easy, but it took many iterations...
— A useless empty PyCoolDict.so still exists in COOL 3.0.x

‘{E/RW A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016 12

N,

ROOT6 migration issues for PyCool
(1) Boost vs c++11 in ROOT5 vs ROOTG6

« ROOTS5 does not support c++11

— The COOL C++ API with ROOTS5 cannot contain c++11
* |t contains Boost instead — the old COOL2 (and CORAL2) releases

« ROOTG6 was (is?) choking on headers using Boost

— The COOL C++ API with ROOT6 can no longer use Boost
|t was moved to c++11 instead — the new COOL3 (and CORAL3)

« Consequence: two COOL and CORAL code branches have
been maintained in parallel for almost two years
— (Largely reusing identical files with #ifdef’s actually)

\w A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 301" May 2016 13

N,

ROOT6 migration issues for PyCool
(2) C++ exceptions in ROOT 6.02 (JIT) vs 6.04 (ORCJIT)

 PyCool users (ATLAS and internal tests) heavily rely on C++
exception being properly translated to Python exceptions
— And Python try/except is even more common than try/catch in C++!

« ROOT 6.00 and 6.02 (JIT) cause an unrecoverable Python
abort on Linux whenever a C++ exception is thrown
— C++ exceptions are only translated to Python in ROOT 6.04 (ORCJIT)

« Conseguence: urgent workarounds were added to COOL to
allow ATLAS ConditionsDB tools to work with ROOT 6.02
— C++ helper functions: add a status return to convey C++ exception

— These (many) ugly patches will be removed when only 6:64 is left
« Same issue now found on Mac on 6.06: wait for 6.08 & 6.087

‘{E/RW A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016 14

N,

Was ROOT the right choice for Pythonization?

« PyCool uses Reflection/Reflex’ ROOT since always (10 years)
— This seemed the road HEP would take (also for 1/0), and it did
— Advantages? Automatic parsing of headers... (and good support)

— Disadvantages? Extra dependency on ROOT (on the release cycle, on
the occasional bugs — and initially even on unwanted graphic libraries!)

« PyCoral uses manual coding of CPython bindings for CORAL
— Developed around the same time in what was then a separate project
— Advantages? Standalone solution, from first principles
— Disadvantages? Maintainability (must follow all C++ API changes)
— If anything, | would now move PyCoral to the PyCool ROOT solution

« Many other solutions out there now (Boost, cython...)
— Maybe these were not mature 10 years ago, but they probably are now

‘{E{"W A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 30" May 2016 15

N,

Conclusions

« ROOT Is successfully used in COOL since 10 years

for creating Python bindings for C++ (PyCool)
— Many evolutions so far (and more to come with PCM?)

« ROOTG6 (especially ROOT6.04) has made this easier
— But the road has been rough, and we have not arrived yet

 Just-in-time parsing makes ROOT6 an attractive and

mature solution for creating C++/Python bindings

— But alternative competitors are also more mature by now!

— To make it even more attractive, making it more modular,
lightweight (anreHpython-frendhyt) can only help IMHO

(being) done! see next talk...

Many thanks to the ROOT team for their support of PyROOT!

CE{"W A. Valassi — Python bindings for C++ in PyCool 2"d CERN Dev Forum — 301" May 2016 16

\
NS

