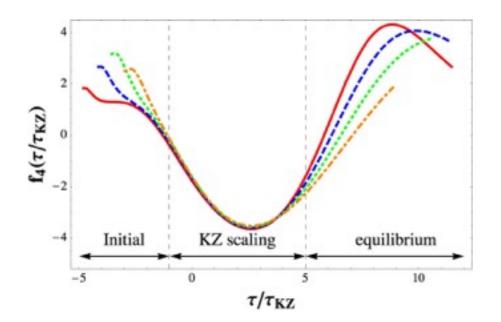
Kibble-Zurek dynamics and nonequilibrium scaling for critical cumulants



Topical Workshop on Beam Energy Scan, Indiana University, May. 9-11, 2016

Motivations

Critical Fluctuations and Static Universality

- Fluctuations of critical mode σ : scale with correlation length near a critical point.
- Higher cumulants: stronger dependence on ξ_{eq} , universal pattern in sign (Stephanov, 2009, 2011) from static universality (the same as 3d Ising model).

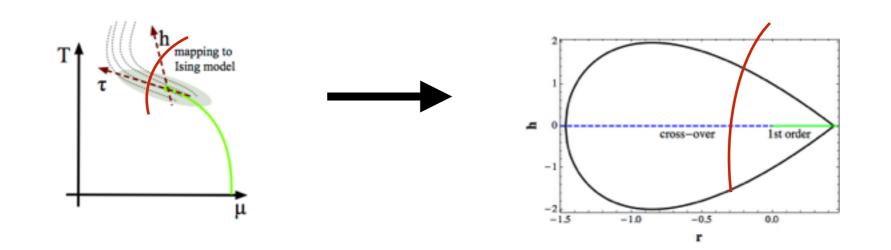
$$\kappa_2^{\mathrm{e}q} \equiv \langle \delta \sigma^2 \rangle \sim \xi_{\mathrm{e}q}^2$$

$$\kappa_{3}^{\mathrm{e}q} \equiv \langle \delta \sigma^{3} \rangle \sim \xi_{\mathrm{e}q}^{4.5} \qquad \kappa_{4}^{\mathrm{e}q} \equiv \langle \delta \sigma^{4} \rangle - 3 \left(\kappa_{2}^{\mathrm{e}q}\right)^{2} \sim \xi_{\mathrm{e}q}^{7}$$

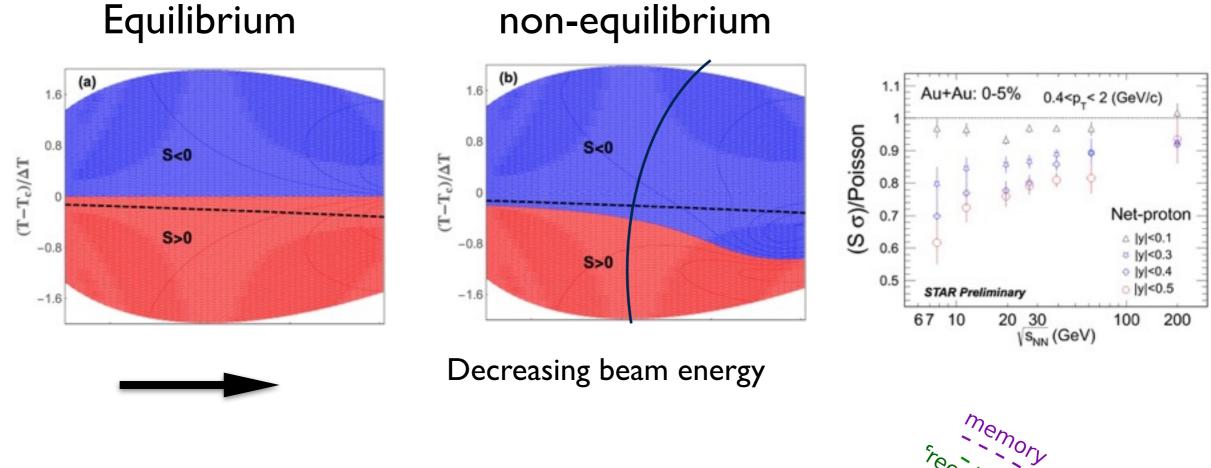
Static universality is not enough

- Non-equilibrium effects are unavoidable: $au_{\sigma} \sim \xi_{eq}^{z}$, $z \approx 3$
- We need to determine cumulants $\kappa_n(\tau)$ along a trajectory (parametrized by the proper time τ) passing the QCD critical regime.
- We derived a set of novel evolution equations of cumulants (S. Mukherjee, R. Venugopalan and YY, 1506.00645, PRC; 1512.08022, QM proceedings).

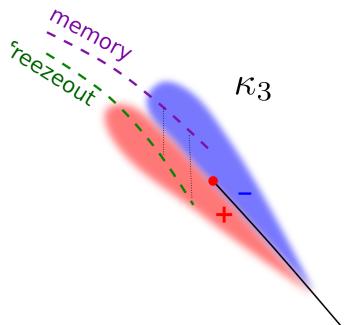
(useful trick: mapping between QCD variable and Ising variables)



Example: non-equilibrium Skewness



- "Sign puzzle" of skewness: "remembrance of things past".
- Non-equilibrium critical cumulants could be qualitatively different from equilibrium expectations.



- When do non-equilibriums effects become important?
- \bullet Which non-universal inputs (collectively denoted by Γ) dominate the dynamics?
- Are there any universal features of non-equilibrium cumulants which suggest the presence of a critical point?
- Answers to those questions are connected by: Kibble-Zurek dynamics.

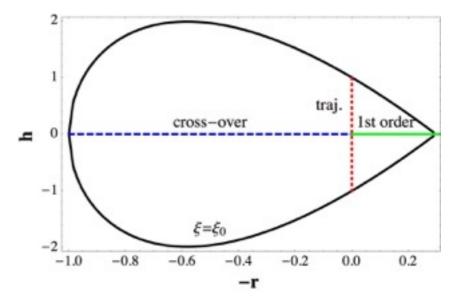
Kibble-Zurek dynamics

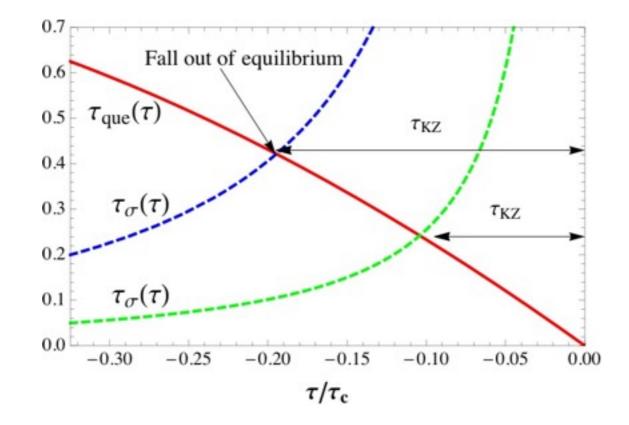
An illustrative example

- Consider a trajectory passing the critical point first discussed in Berdnikov-Rajagopal-1999).
- Parametrizing trajectory as:

$$h(\tau) \sim [T(\tau) - T_c]$$
 $T(\tau) = T_c \left(\frac{\tau}{\tau_c}\right)^{-n_V c_s^2}$

$$\tau_{\sigma}(\tau) = \tau_{\sigma}^{0} \left[\frac{\xi_{\rm eq}(\tau)}{\xi_{0}} \right]^{3} \qquad \qquad \xi_{\rm eq}(\tau) \sim |h(\tau)|^{-\frac{\nu}{\beta\delta}}$$





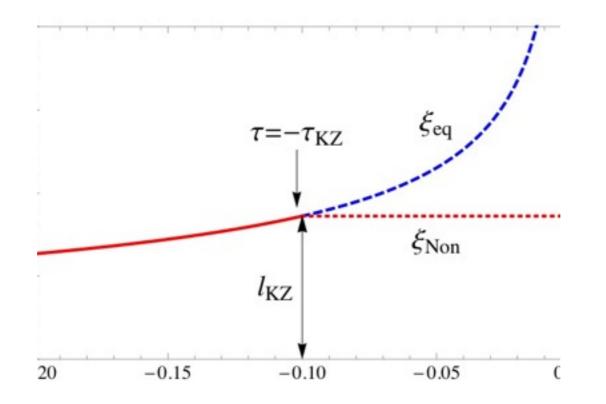
Q: when do non-equilibrium effects become important?

A: relaxation time becomes longer than the "quench" time.

$$\tau_{\sigma}(\tau) > \tau_{\rm que}^{\xi} \equiv \left| \frac{\xi_{\rm eq}}{\partial_{\tau} \xi_{\rm eq}} \right|$$

 Kibble-Zurek time (Kibble, domain growth in early universe, 1976, Zurek, Superfluid, 1993): an emergent time scale for non-equilibrium dynamics.

$$\tau_{\sigma}(\tau_{\rm KZ}) = \tau_{\rm que}(\tau_{\rm KZ})$$

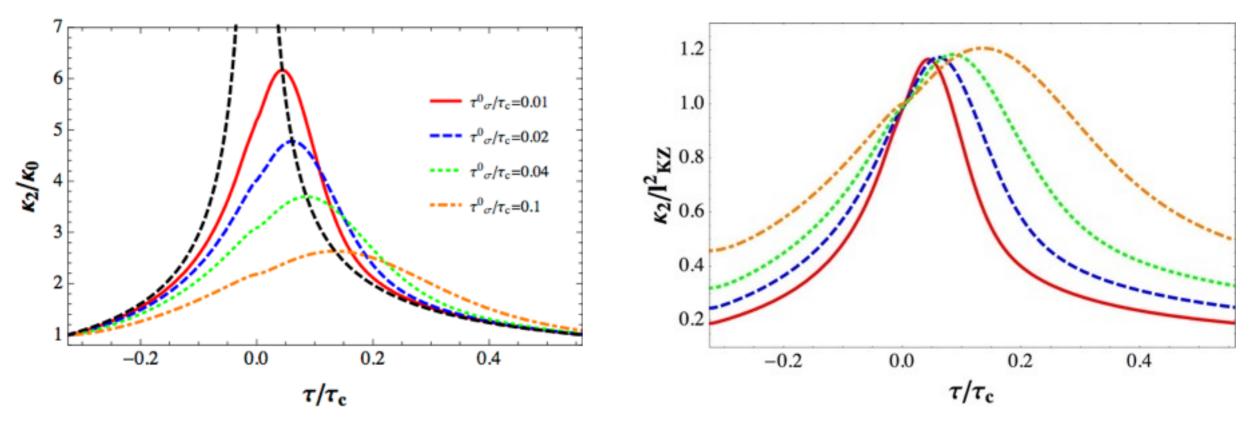


• A simple approximation: the evolution is frozen .

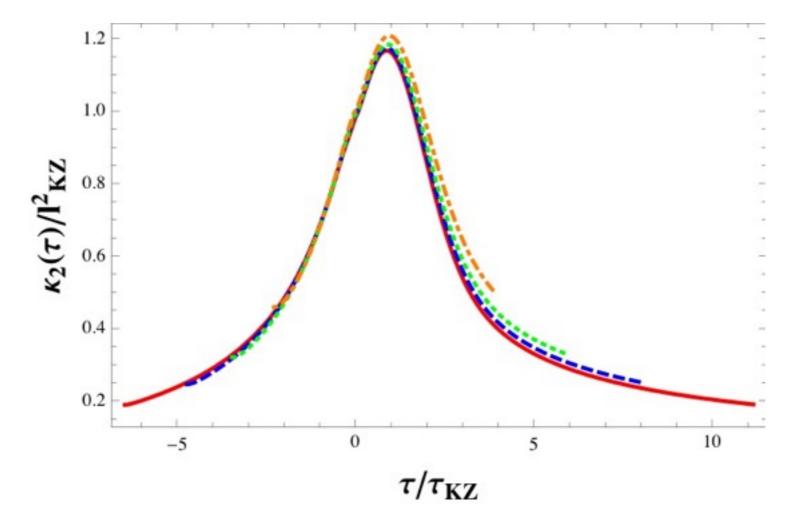
$$l_{\rm KZ} = \xi_{\rm eq}(\tau_{\rm KZ})$$

- Kibble-Zurek dynamics: l_{KZ} , τ_{KZ} determine the length and time scale of the non-equilibrium evolution.
- For example: $\kappa_2 \sim l_{\rm KZ}^2$ and $\kappa_3 \sim l_{\rm KZ}^{9/2}$ $\kappa_4 \sim l_{\rm KZ}^7$

Scaling with length is not enough



- Let us rescale Gaussian cumulants determined from Berdnikov-Rajagopal model by $l_{\rm KZ}^2$.
- The peak value now looks universal, but time-dependence does not.
- A step forward: let us rescale time by τ_{KZ} !



• We illustrated the existence of a scaling function:

$$\kappa_2(\tau;\Gamma) \sim l_{\mathrm{KZ}}^2(\Gamma) \underbrace{f_2(\tau/\tau_{\mathrm{KZ}}(\Gamma))}_{\mathrm{Universal}} (\Gamma: \text{non-universal inputs})$$

• NB: the study of non-equilibrium dynamical scaling is a new frontier in critical dynamics.

The Kibble-Zurek Problem: Universality and the Scaling Limit

Anushya Chandran Department of Physics, Princeton University, Princeton, NJ 08544

PUPT-2405

Amir Erez* Department of Physics, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel

> Steven S. Gubser and S. L. Sondhi Department of Physics, Princeton University, Princeton, NJ 08544 (Dated: September 20, 2012)

PRL 109, 015701 (2012)

PHYSICAL REVIEW LETTERS

week ending 6 JULY 2012

Nonequilibrium Dynamic Critical Scaling of the Quantum Ising Chain

Michael Kolodrubetz,¹ Bryan K. Clark,^{1,2} and David A. Huse^{1,2}

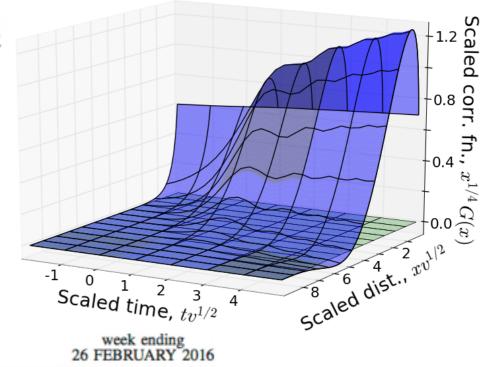
¹Department of Physics, Princeton University, Princeton, New Jersey 08544, USA ²Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA (Received 2 February 2012; published 2 July 2012)

We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively



Universality in the Dynamics of Second-Order Phase Transitions

G. Nikoghosyan,^{1,2} R. Nigmatullin,³ and M. B. Plenio¹ ¹Institut für Theoretische Physik, Albert-Einstein Allee 11, Universität Ulm, 89069 Ulm, Germany ²Institute of Physical Research, 378410 Ashtarak-2, Armenia ³Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom (Received 18 November 2013; revised manuscript received 10 February 2015; published 26 February 2016)



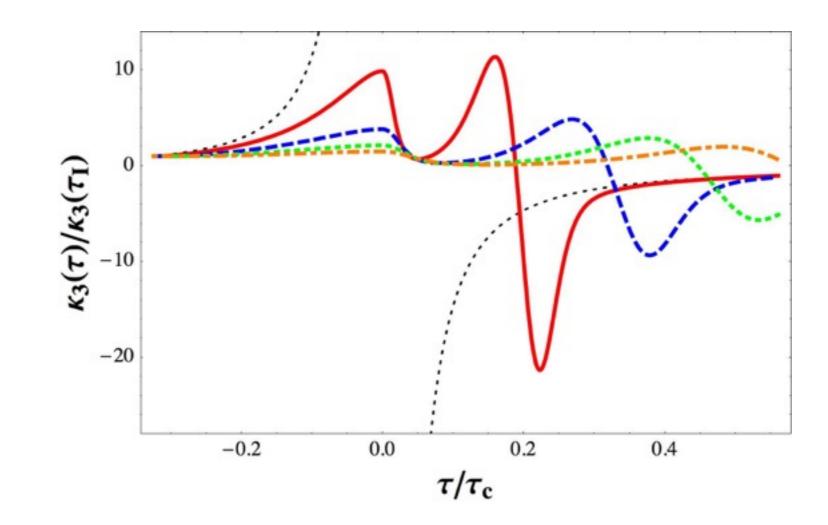
- What does Kibble-Zurek scaling imply for search for QCD critical point via Beam energy scan program?
- Missing gaps in literature:
 - Formulating and testing scaling hypothesis for non-Gaussian cumulants.
 - Generalizing non-equilibrium scaling for trajectories away from the critical point.
- The remainder of this talk: report recent results (S. Mukherjee, R.Venugopalan and YY, in preparation).

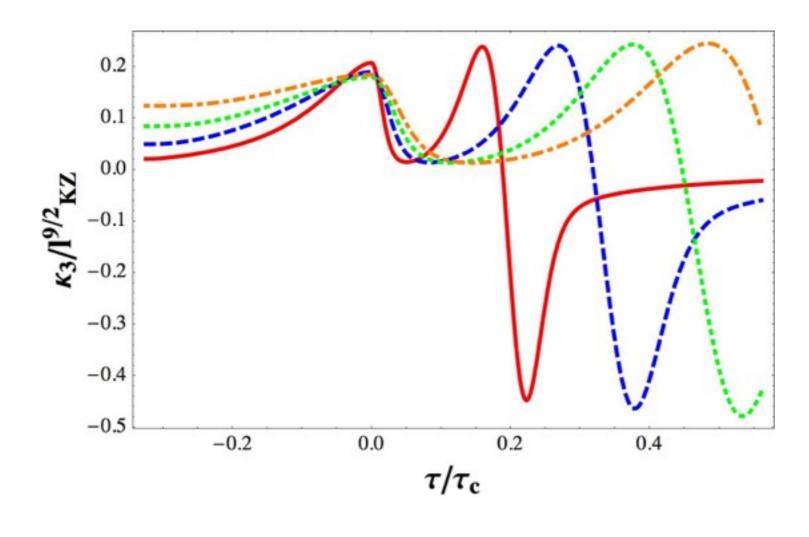
Non-equilibrium scaling hypothesis for critical cumulants

$$\begin{split} M(\tau;\Gamma) &\sim l_{\mathrm{KZ}}^{-1/2}(\Gamma) f_1(\tilde{t}) & \tilde{t} = \frac{\tau}{\tau_{\mathrm{KZ}}(\Gamma)} & \tilde{t} = \frac{\tau}{\tau_{\mathrm{KZ}}(\Gamma)} & \int_{0}^{1} \int_{0$$

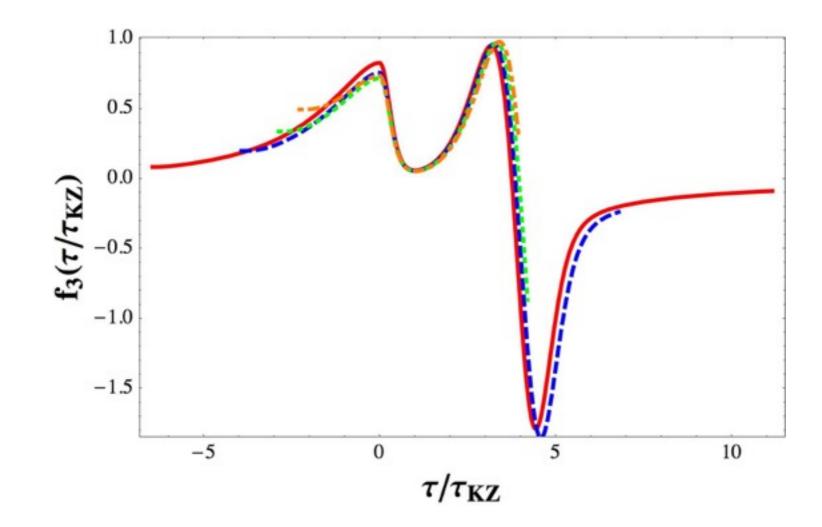
2

- Scaling behavior can be shown exists analytically (under mild technical assumption) for trajectories passing the critical point.
- We also test it numerically for third and fourth cumulants.





Rescaled by $l_{\rm KZ}$

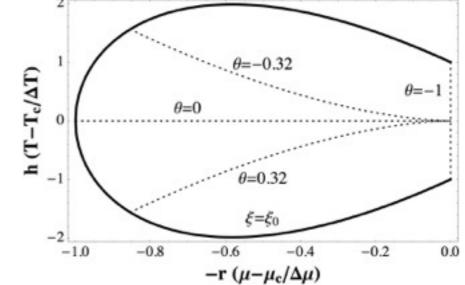


Trajectories away from the critical point

• A point in critical regime can be mapped to r, h or $\xi_{eq}(r,h), \theta(r,h)$. The latter will be convenience.

 $M_{\rm eq}(r,h) \sim \xi_{\rm eq}^{-1/2}(r,h) \,\tilde{M}(\theta)$

• θ is the scaling variable, which changes sign when passing crossover line. It controls sign of magnetization as well as non-Gaussian cumulants.



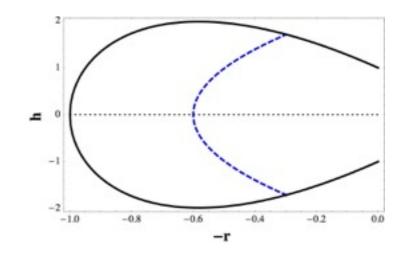
• Two different quench times accordingly:

$$\tau_{\rm que}^{\xi}(\tau) \equiv \left| \frac{\xi_{\rm eq}(\tau)}{\partial_{\tau}\xi_{\rm eq}(\tau)} \right|, \qquad \tau_{\rm que}^{\theta}(\tau) \equiv \left| \frac{\theta(\tau)}{\partial_{\tau}\theta(\tau)} \right|$$

A new realization of KZ dynamics

• For a generic trajectory near the crossover line: (we choose $\tau = 0$ when passing the cross-over line .)

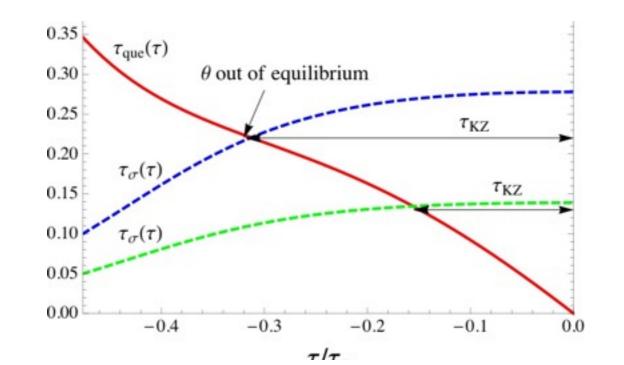
$$heta(au) \propto au$$



Consequently,

$$au_{\mathrm{que}}^{\theta}(au) \sim | au| \ll au_{\mathrm{que}}^{\xi}$$

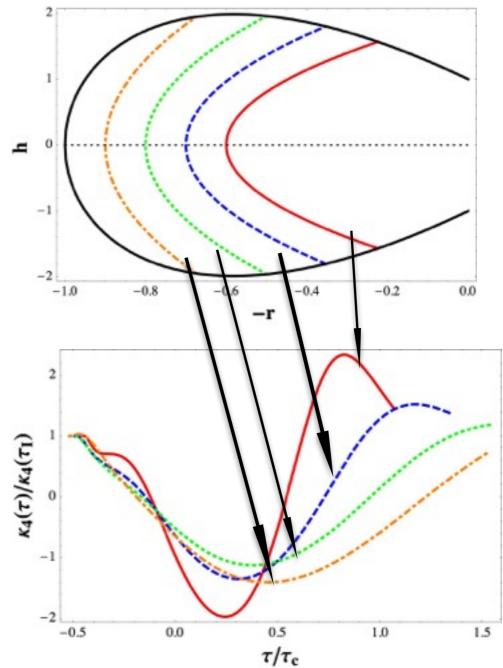
• Relaxation time remains finite, but θ changes too fast!

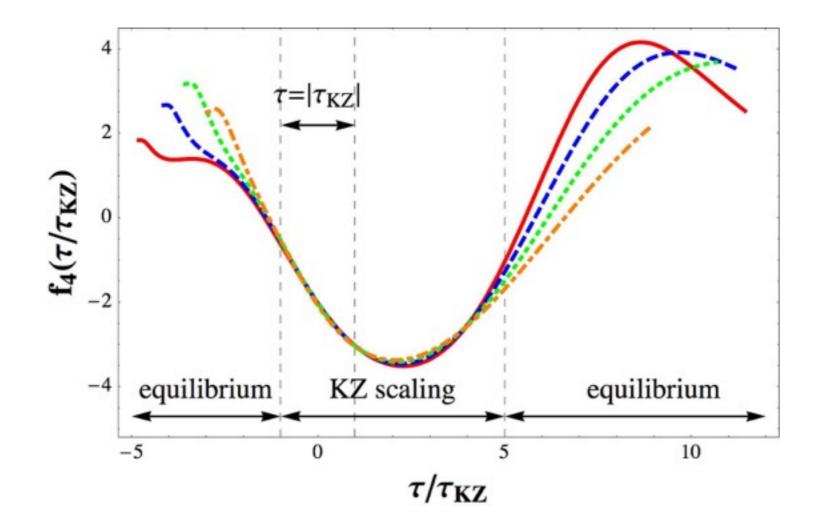


- A new non-equilibrium scaling variable: ("memory of spin orientation"). $\theta_{KZ} = \theta(-\tau_{KZ})$
- Generalized scaling hypothesis (S. Mukherjee, R. Venugopalan and YY, in preparation, including *analytic* insights):

 $\kappa_n(\tau;\Gamma) \sim l_{\mathrm{KZ}}^{\#}(\Gamma) f_n(\tilde{t},\theta_{\mathrm{KZ}})$

- Testing scaling hypothesis: different trajectories, same $\theta_{\rm KZ}$.
- Equilibrium cumulants, τ_{KZ} , l_{KZ} are different for those trajectories.
- Expectation from the scaling hypothesis: scaling functions are independent of trajectories.





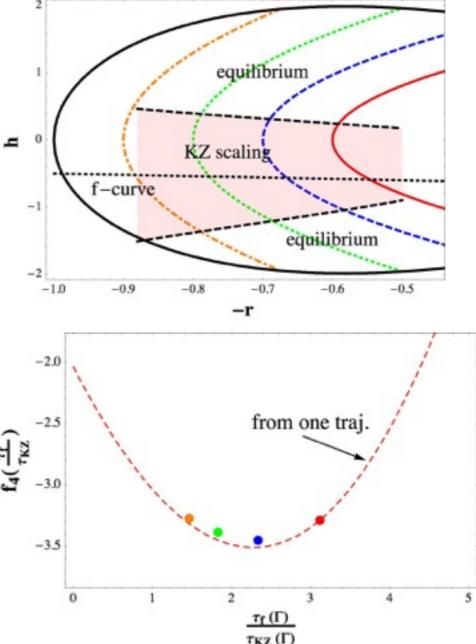
• The system stays much longer in KZ scaling regime than naively expectation (an attractor?).

This extended scaling regime below cross-over curve might potentially be probed by freeze-out curve.

Step I: finding scaling function from one representative trajectory.

Step 2: determining $\tau_{KZ}(\Gamma), l_{KZ}(\Gamma)$ for

other trajectories. Step 3: check if rescaled cumulants at $\frac{1}{2}$ (rescaled) freeze-out time matches to scaling functions.



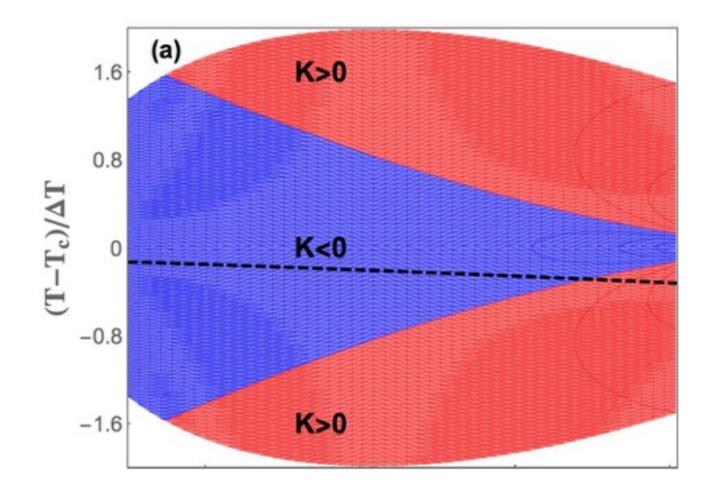
Hydro. modeling is essential for determining $\tau_{KZ}(\Gamma), l_{KZ}(\Gamma)$

A vision: if scaling behavior based on Kibble-Zurek dynamics has been observed in data, this would be a convincing evidence for the existence of critical point.

Summary

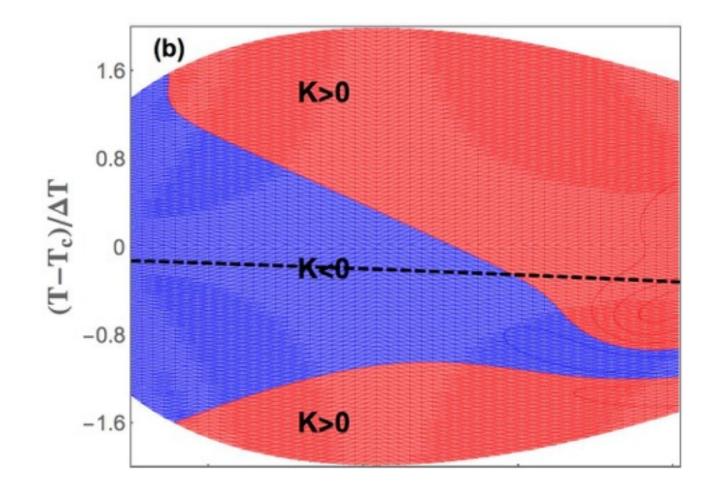
(or how to produce a better cartoon)

Static universality: zeroth order approximation



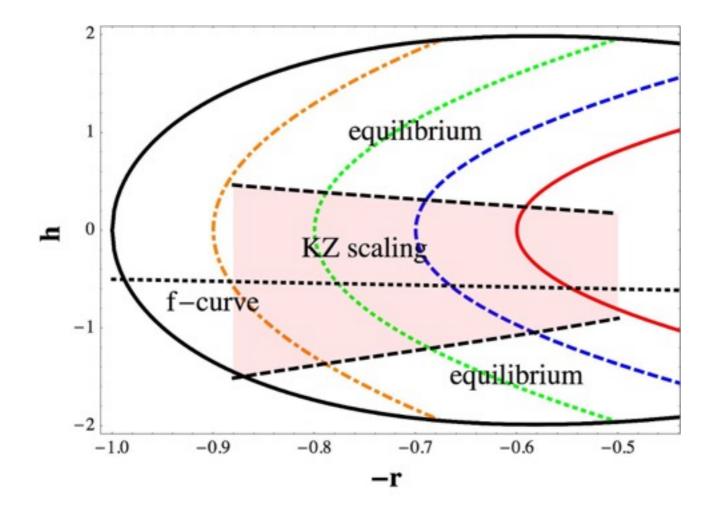
(equilibrium kurtosis, translated from Stephanov, PRL 2011)

Non-equilibrium effects: a step forward!



(non-equilibrium Kurtosis, from S. Mukherjee, R. Venugopalan and YY, 1506.00645, PRC, 2015)

Emergent scale (τ_{KZ} , l_{KZ} , θ_{KZ}), emergent new physics.



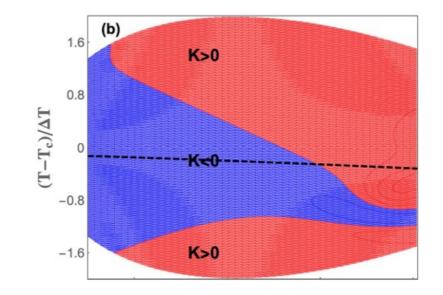
(This talk, S. Mukherjee, R. Venugopalan and YY, in preparation)

Back-up slides

- We report progress on non-equilibrium evolution of critical dynamics.
- We discuss characterize time and length scale and illustrate the possible existence of non-equilibrium scaling behavior.
- Non-equilibrium scaling behavior might signal the presence of a critical point.

Kurtosis in (cross-over side of) critical regime

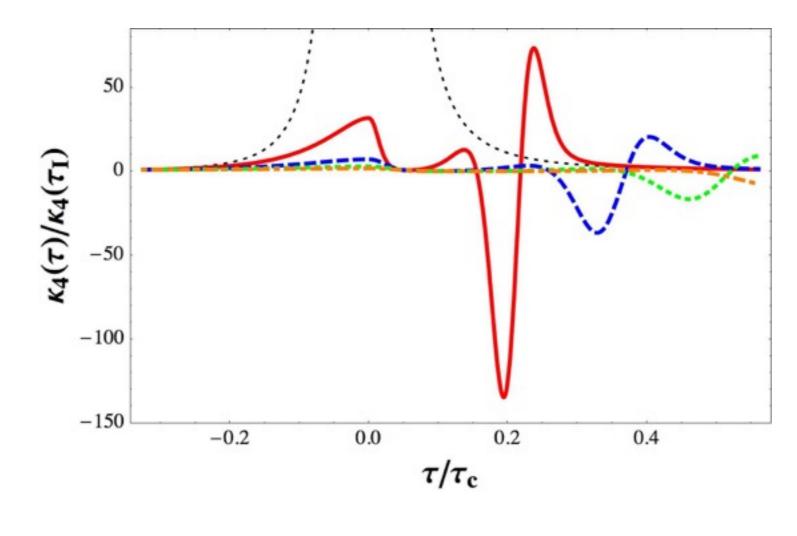




Equilibrium

non-equilibrium

• The boundary deforms.



Kurtosis

