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Motivations



Critical Fluctuations and Static Universality

® Fluctuations of critical mode o :scale with correlation length
near a critical point.

® Higher cumulants: stronger dependence on &.q , universal
pattern in sign (Stephanov, 2009, 2011) from static
universality (the same as 3d Ising model).
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Static universality is not enough

el . : z ~
® Non-equilibrium effects are unavoidable: 75 ~ &g, z =3

® We need to determine cumulants #n(7) along a  trajectory
(parametrized by the proper time 7 ) passing the QCD critical
regime.

® We derived a set of novel evolution equations of cumulants (S.
Mukherjee, R.Venugopalan and YY, 1506.00645, PRC; 1512.08022,
QM proceedings).

(useful trick: mapping between QCD variable and Ising variables)
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Example: non-equilibrium Skewness

Equilibrium non-equilibrium
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Decreasing beam energy

® “Sign puzzle” of skewness: “remembrance of
things past’”.

® Non-equilibrium critical cumulants could be
qualitatively different from equilibrium
expectations.
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® When do non-equilibriums effects become important!?

® Which non-universal inputs (collectively denoted by 1 )
dominate the dynamics?

® Are there any universal features of non-equilibrium cumulants
which suggest the presence of a critical point?

® Answers to those questions are connected by: Kibble-Zurek
dynamics.



Kibble-Zurek dynamics



An illustrative example

® Consider a trajectory passing the critical
point first discussed in Berdnikov-

Rajagopal-1999).

® Parametrizing trajectory as:

h(r) ~[T(1) - T] T(r) = T (9 o

® The evolution of relaxation time is how known:
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Q: when do non-equilibrium effects become important!?

A: relaxation time becomes longer than the “quench” time.
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e Kibble-Zurek time (Kibble, domain growth in early universe,
1976, Zurek, Superfluid, 1993): an emergent time scale for
non-equilibrium dynamics.
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® A simple approximation: the evolution is frozen .

lKZ = 60(1(7-KZ)
® Kibble-Zurek dynamics: Ixy, 7z determine the length and

time scale of the non-equilibrium evolution.

2 2 9/2
® For example: kg ~ lixz and K3 ~ lK/Z Kgq ~ 117<z



Scaling with length is not enough
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® et us rescale Gaussian cumulants determined from Berdnikov-
Rajagopal model by /iy

® The peak value now looks universal, but time-dependence does
not.

step forward: let us rescale time KZ !
® A step f d: let le time by 7kz !
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® We illustrated the existence of a scaling function:

k2(T;T) ~ Iz (T) f2 (7/mKz(T)) (I": non-universal inputs)
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Universal

® NB: the study of non-equilibrium dynamical scaling is a
new frontier in critical dynamics.
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® What does Kibble-Zurek scaling imply for search for QCD
critical point via Beam energy scan program!?

® Missing gaps in literature:

® Formulating and testing scaling hypothesis for non-
Gaussian cumulants.

® Generalizing non-equilibrium scaling for trajectories
away from the critical point.

® The remainder of this talk: report recent results (S.
Mukherjee, R.Venugopalan andYY,in preparation).



Non-equilibrium scaling hypothesis for
critical cumulants



® Scaling behavior can be shown exists analytically (under mild
technical assumption) for trajectories passing the critical

point.

® We also test it numerically for third and fourth cumulants.
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Rescaled by ixz
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Trajectories away from the critical point



® A point in critical regime can be mapped to r,h or (7, h),0(r. h).
The latter will be convenience.

Meg(r, h) ~ E2Y2(r, h) M(6)

eq

® ¢ is the scaling variable, which changes sigh when passing cross-
over line. It controls sign of magnetization as well as non-Gaussian

cumulants.
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A new realization of KZ dynamics

® For a generic trajectory near the cross-

over line: (we choose 7 =0 when
passing the cross-over line .) .
O(1) x T
0 ¢ K
Consequently, Tquc(T) ™~ IT‘ < 7_quo

® Relaxation time remains finite, but ¢ changes too fast!
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® A new non-equilibrium scaling variable:
¢¢ * ° . I
(“memory of spin orientation”). .., = §(—7ky)

® Generalized scaling hypothesis (S. Mukherjee, R.Venugopalan
and YY, in preparation, including analytic insights):

kn(T; 1) ~ l}#?z (T') fnl(t,Oxz)



® Testing scaling hypothesis: different i
trajectories, same  Okz

® EqU|I|brlum CumUIantS, TI(ZJI(Z are
different for those trajectories.

® Expectation from the scaling
hypothesis: scaling functions are
independent of trajectories.
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f4(r/7x2)
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® The system stays much longer in KZ scaling regime than naively
expectation (an attractor?).



This extended scaling regime below
cross-over curve might potentially be ;
probed by freeze-out curve. : L e
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Step |: finding scaling function from
one representative trajectory.
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Step 2: determining 7xz(I'),lkz(I') for
other trajectories.

o 25 from one traj.
Step 3: check if rescaled cumulants at 3 .,
(rescaled) freeze-out time matches to s
35 b SO R g
scaling functions.
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Hydro. modeling is essential for determining 7y ("), lyz(T)

A vision: if scaling behavior based on Kibble-Zurek dynamics has been
observed in data, this would be a convincing evidence for the existence of
critical point.



Summary

(or how to produce a better cartoon)



Static universality: zeroth order approximation

(equilibrium kurtosis, translated from Stephanov, PRL 201 1)



Non-equilibrium effects: a step forward!

(non-equilibrium Kurtosis, from S. Mukherjee, R.Venugopalan
and Y'Y, 1506.00645, PRC, 2015)



Emergent scale ( 7xz, lxz 0k7), emergent new physics.
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(This talk, S. Mukherjee, R.Venugopalan and YY, in preparation)



Back-up slides



® We report progress on non-equilibrium evolution of
critical dynamics.

® We discuss characterize time and length scale and
illustrate the possible existence of non-equilibrium
scaling behavior.

® Non-equilibrium scaling behavior might signal the
presence of a critical point.



Kurtosis in (cross-over side of) critical
regime

(T-Tc)/ AT
(T-Tc)/ AT

Equilibrium non-equilibrium

® The boundary deforms.



04

(12)P3/(2)P¥

100

02

00

-02

-150

T/Te

Kurtosis






(P2] 1)1y

0

-1

T/TKzZ



