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RHIC Beam ERElCEESSIEREIRIE iheiphase

diagram of QCD

» The BES program at RHIC: explore properties of QCD in different
regions of the phase diagram

» Does QCD have a first order phase fransition? If so, where?

» What are its experimental signatures, i.e. observablese

» What can we learn about [P0 o= eeaey
poorly explored fransport :
coefficients of QCD,

e.g. k,o0, relevant in the
BES contexte
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» Dissipative hydrodynamics was quite successful at describing
various observables at top RHIC and LHC energies.

» How are the hydro equations modified within the context of
the BES and how do these affect dilepton radiatione



Hydrodynamics at lower /syn

» Israel-Stewart dissipative hydrodynamics at lower beam energies:
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» P(g, ug): Lattice QCD at finite ug using Taylor expansion + Hadron
Resonance Gas in chem. eq. [in collaboration with McGilll
University and Brookhaven National Laboratory].



Hydrodynamics at lower /Syn (c:on’r’d)l

» Starting from the same initial condifion, while also keeping the
same freeze-out energy density, investigate 3 hydrodynamical

evolutions:
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» Goals:
To investigate the influence of net baryon density pg (or ug) and

Baryon diffusion V# on dilepton production, where the transport
coefficient k is governing the size of V¥,



Initial Conditions

» Longitudinal direction: the spatial rapidity profile baryon
density is
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» Parameters of gg(ns) tTuned

to the measured charged 0-80%
hadron dN¢"/dn spectrum | JSvn = 7.7 GeV

eg \VSNN — 7.7 GeV

» In the transverse direction: averaged MC-Glauber inifial
conditions with aligned event plane angles, such that the
correct (v,) is reproduced after averaging the MC-Glauber
events.






Dilepton rates from the QGP

» An important source of dileptons in the QGP

» The rate in kinetic theory (Born Approx)
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» More sophisticated dilepton calculations exist: Lattice QCD,
NLO pQCD

» However those have limitations...



Thermal Dilepton Rates from HM

» The dilepton production rate is :
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» Model based on forward scattering amplitude [Eletsky, et al.,
PRC, 64, 035202 (2001)] “
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Vector meson self-energies
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» The forward scattering amplitude

» Low energies: .
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» High energies:
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» Other approaches exist: e.g. effective Lagrangian method by R.
Rapp [PRC 63, 054907 (200T)]




Viscous corrections to rate

» m*V and V#* break spherical symmetry in the local rest frame of
the medium.

» Matching fluid degrees of freedom to parficles

» using Israel-Stewart approximation for Y
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Viscous corrections to rate

» m*V and V#* break spherical symmetry in the local rest frame of
the medium.

» Matching fluid degrees of freedom to parficles

» using RTA approximation for V*
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Viscous corrections to rate
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» HM dilepton rate T LZ){—g}nBE(Q'U)

» Self-energy
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Interpolating between QGP and HM

» Unlike the case of high energy collisions (where T is used) to lin.
inferp. between HM and QGP, we now use ¢

d*R d4RQGp d*R
2ig = T06P—gag A MUUEEEEEENE
GeV
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The ¢ range over which this intferpolation is done is an
estimate, which will be improved upon very soon.

» Flow coefficients

dN 1
dMprdprdpdy — 2m dMprdprdy

CaE Z 2v,, cos(np — n¥,)
n=1

» Important note: v,,'s are obtained via a yield weighted
average of the HM and QGP sources.






Dilepton yield and elliptic flow
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Dilepton yield and elliptic flow
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Dilepton yield and elliptic flow
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Why is total v, decreased with ug&lV#?2

» Recall vietalis a yield weighted avg of HM's and QGP'’s v,.

» viotalis reduced at high p; because more weight is put on the
QGP contribution of v,, i.e. QGP yield remains the same while
the HM yield is reduced.
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How does V* change ”?B S aneEkr?
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Conclusions

» A first (preliminary) dilepton calculation using 3+1D dissipative
hydrodynamical evolution, shows that:

»  Width broadening of vector mesons in the medium, as expected from a non-
zero ug, is responsible for the main new features seen in dilepton yield and v,,
not present in the case of high energy HIC.

» The dilepton v, (pr) is sensitive to effects that baryon-number diffusion induces
on the evolution of the medium, in the p; region 1.5 < p; < 3 GeV.

» All the ingredients are now In place o start studying the sensitivity
of thermal dileptons 1o baryon diffusion, within a hydrodynamical
context.



Ovutlook

» Perform a dilepton calculation using an event-by-event
hydrodynamical evolution, for various parametrizations of «,
various inifial conditions for V#, using improved inifial conditions,
and various beam energies.

» Include the effects of other dissipative degrees of freedom
(e.g. 1)
» Compute dilepton production from a hadronic transport

model, e.g. UrQMD, in order to have a more realistic account
of the total number of dilepton produced in the context of BES.
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Motivation to study BES

» Sensitivity of hadronic observables to uz and V#
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» Question: what about dileptons?
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NLO QGP dilepton results

Some diagrams contributing at NLO
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