1

Sensitivity of thermal dileptons to the dissipative properties of a hydrodynamical evolution

Gojko Vujanovic, Chun Shen, Gabriel S. Denicol, Björn Schenke, Sangyong Jeon, and Charles Gale

Topical Workshop on Beam Energy Scan

Indiana University Bloomington, Indiana, USA May 10th 2016

Outline Introduction

Part I: Modelling of the QCD Medium

- Initial condition for baryon number
- Viscous hydrodynamics

Part II: Thermal Sources of Dileptons

- QGP Rate (w/ dissipative corrections)
- Hadronic Medium Rates (w/ dissipative corrections)

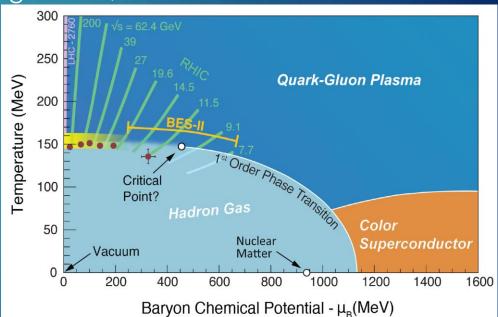
Part III: Dileptons & Dissipative Evolution

Effects of net baryon density and diffusion on dilepton yield and v_n

Conclusion and outlook

RHIC Beam Energy Scan and the phase diagram of QCD

- The BES program at RHIC: explore properties of QCD in different regions of the phase diagram
 - Does QCD have a first order phase transition? If so, where?
 - What are its experimental signatures, i.e. observables?
 - What can we learn about poorly explored transport coefficients of QCD, e.g. κ, σ, relevant in the BES context?



3

- Dissipative hydrodynamics was quite successful at describing various observables at top RHIC and LHC energies.
- How are the hydro equations modified within the context of the BES and how do these affect dilepton radiation?

Hydrodynamics at lower $\sqrt{s_{NN}}$

π

Israel-Stewart dissipative hydrodynamics at lower beam energies:

$$\begin{aligned} \partial_{\mu} T^{\mu\nu} &= 0 \\ T^{\mu\nu} &= T_{0}^{\mu\nu} + \pi^{\mu\nu} \\ T_{0}^{\mu\nu} &= \varepsilon u^{\mu} u^{\nu} - P \Delta^{\mu\nu} \\ \tau_{\pi} \Delta^{\mu\nu}_{\alpha\beta} u^{\sigma} \partial_{\sigma} \pi^{\alpha\beta} + \pi^{\mu\nu} &= 2\eta \sigma^{\mu\nu} - \delta_{\pi\pi} \pi^{\mu\nu} \theta \\ \tau_{\pi} &= \frac{5\eta}{\varepsilon + P}; \quad \frac{\eta T}{\varepsilon + P} &= \frac{1}{4\pi}; \quad \delta_{\pi\pi} &= \frac{4}{3} \tau_{\pi} \\ \end{pmatrix} \begin{bmatrix} \nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} \\ 2 \end{bmatrix} = 2\eta \sigma^{\mu\nu} \\ \end{bmatrix} = 2\eta \sigma^{\mu\nu} \\ \end{aligned}$$

► $P(\varepsilon, \mu_B)$: Lattice QCD at finite μ_B using Taylor expansion + Hadron Resonance Gas in chem. eq. [in collaboration with McGill University and Brookhaven National Laboratory].

Hydrodynamics at lower $\sqrt{s_{NN}}$ (cont'd)

- 5
- Starting from the same initial condition, while also keeping the same freeze-out energy density, investigate 3 hydrodynamical evolutions:

$$P = \begin{cases} P(\varepsilon) \\ P(\varepsilon, \mu_B) \end{cases}$$
$$V^{\mu} \rightarrow \begin{cases} 0 \\ \tau_V \Delta^{\mu}_{\alpha} u^{\sigma} \partial_{\sigma} V^{\alpha} + V^{\mu} = \kappa \nabla^{\mu} \left(\frac{\mu_B}{T}\right) - \tau_V V^{\mu} \theta - \lambda_{VV} \sigma^{\mu \nu} V_V$$

Goals :

- To investigate the influence of net baryon density ρ_B (or μ_B) and
- Baryon diffusion V^{μ} on dilepton production, where the transport coefficient κ is governing the size of V^{μ} .

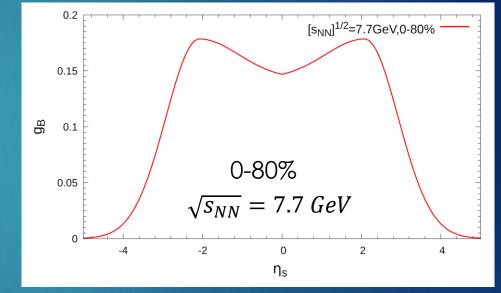
Initial Conditions

Longitudinal direction: the spatial rapidity profile baryon density is

$$g_B(\eta_s) = N\Theta(|\eta_s| - \eta_{s,0}) \exp\left[-\frac{\left(|\eta_s| - \eta_{s,0}\right)^2}{2\Delta\eta_{s,1}}\right] + N\left[1 - \Theta(|\eta_s| - \eta_{s,0})\right] \left[A + (1 - A) \exp\left[-\frac{\left(|\eta_s| - \eta_{s,0}\right)^2}{2\Delta\eta_{s,2}}\right]\right]$$

$$N = \left[\sqrt{2\pi}\Delta\eta_{s,1} + (1-A)\sqrt{2\pi}\Delta\eta_{s,2} + 2A\eta_{s,0}\right]^{-1}$$

Parameters of $g_B(\eta_s)$ tuned to the measured charged hadron $dN^{ch}/d\eta$ spectrum e.g. $\sqrt{s_{NN}} = 7.7 \ GeV$



6

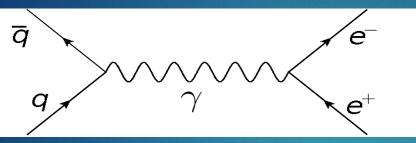
In the transverse direction: averaged MC-Glauber initial conditions with aligned event plane angles, such that the correct $\langle v_2 \rangle$ is reproduced after averaging the MC-Glauber events.

Part II: Dilepton Rates

Dilepton rates from the QGP

8

An important source of dileptons in the QGP



The rate in kinetic theory (Born Approx) $\frac{d^4R}{d^4q} = \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} n(k_1 \cdot u/T - b_i\mu_B/T)n(k_2 \cdot u/T - b_i\mu_B/T)v_{12}\sigma\delta^4(q - k_1 - k_2)$ $b_i = \begin{cases} -1/3 \quad \text{for antiquarks} \\ 0 \quad \text{for gluons} \\ 1/3 \quad \text{for quarks} \end{cases}$ $v_{12} = \frac{M^2}{2E_12E_2}; \quad \sigma = \frac{16 \pi^2 \alpha_{EM}^2 N_c \sum_q e_q}{3M^2}$

 More sophisticated dilepton calculations exist: Lattice QCD, NLO pQCD

However those have limitations...

Thermal Dilepton Rates from HM 9
• The dilepton production rate is:

$$\frac{d^{4}R}{d^{4}q} = \frac{\alpha^{2}}{\pi^{3}} \frac{L(M)}{M^{2}} \left\{ -\frac{1}{3} \left[Im D_{V}^{R} \right]_{\mu}^{\mu} \right\} n_{BE}(q \cdot u) \quad L(M) = \left(1 + \frac{2m_{l}^{2}}{M^{2}} \right) \sqrt{1 - \frac{4m_{l}^{2}}{M^{2}}}$$
• Here

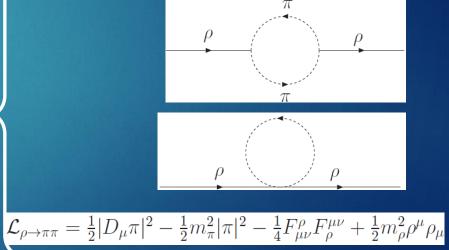
$$-Im D_{V}^{R} = \frac{-Im \Pi_{V}}{\left(M^{2} - m_{V}^{2} - Re\Pi_{V}\right)^{2} + (Im \Pi)^{2}}; where \Pi_{V} \equiv \Pi_{V}^{R}$$
• Model based on forward scattering amplitude [Eletsky, et al.,
PRC, 64, 035202 (2001)]

$$\Pi_{V} = \Pi_{V}^{Vac}(M) + \sum \Pi_{Va}(q, T, \mu_{R})$$

 Π_V^{Vac} is described by effective Lagrangians, e. g.

a

$$\Pi_{Va} = -4\pi \int \frac{d^3k}{(2\pi)^3} n_a(x_{cm}) \frac{\sqrt{s}}{k_{c.m.}^0} f_{Va}^{c.m.}(s)$$
$$x_{cm} = k_{c.m.}^0 / T - b_i \mu_B / T$$



$$\begin{array}{l}
\text{Description} \text{Description} \\
\text{Description} \\$$

► High energies:

$$f_{Va}^{c.m.} = -\frac{q_{cm}}{4\pi s} \sum_{i} \frac{1 + \exp(-i\pi\alpha_i)}{\sin(\pi\alpha_i)} r_{i,Va} s^{\alpha_i}$$

Other approaches exist: e.g. effective Lagrangian method by R. Rapp [PRC 63, 054907 (2001)]

Viscous corrections to rate

- > $\pi^{\mu\nu}$ and V^{μ} break spherical symmetry in the local rest frame of the medium.
- Matching fluid degrees of freedom to particles
 - using Israel-Stewart approximation for $\pi^{\mu\nu}$

 b_i =

$$T_0^{\mu\nu} + \pi^{\mu\nu} = \int \frac{d^3k}{(2\pi)^3 k^0} k^{\mu} k^{\nu} \left[n_a(x) + \delta n_a^{(shear)}(x) \right]; x = \frac{k \cdot u}{T} - b_i \frac{\mu_B}{T}$$

$$\delta n_a^{(shear)}(x) = C_a^{(shear)} n_a(x) [1 \pm n_a(x)] \frac{k^{\mu} k^{\nu} \pi_{\mu\nu}}{2T^2(\varepsilon + P)}; \text{ with } C_a^{(shear)} = 1 \forall a$$

$$= \begin{cases} -1 & for antibaryons \\ 0 & for mesons \\ 1 & for baryons \end{cases} b_i = \begin{cases} -1/3 & for antiquarks \\ 0 & for gluons \\ 1/3 & for quarks \end{cases}$$

Viscous corrections to rate

12

- > $\pi^{\mu\nu}$ and V^{μ} break spherical symmetry in the local rest frame of the medium.
- Matching fluid degrees of freedom to particles
 - \triangleright using RTA approximation for V^{μ}

 $\rho_B u^{\mu} + V^{\mu} = \int \frac{d^3 k}{(2\pi)^3 k^0} k^{\mu} \left[n_a(x) + \delta n_a^{(diff)}(x) \right]; x = \frac{k \cdot u}{T} - b_i \frac{\mu_B}{T}$ $\delta n_a^{(diff)}(x) = C_a^{(diff)} n_a(x) [1 \pm n_a(x)] \left[\frac{n_B T}{\varepsilon + P} - \frac{b_i}{u \cdot k/T} \right] \frac{k^{\mu} V_{\mu}}{T \kappa / \tau_V};$ $with C_a^{(diff)} = 1 \forall a$

 $b_{i} = \begin{cases} -1 & for antibaryons \\ 0 & for mesons \\ 1 & for baryons \end{cases} \quad b_{i} = \begin{cases} -1/3 & for antiquarks \\ 0 & for gluons \\ 1/3 & for quarks \end{cases}$

Viscous corrections to rate

• HM dilepton rate $\frac{d^4R}{d^4q} = \frac{\alpha^2}{\pi^3} \frac{L(M)}{M^2} \left\{ -\frac{1}{3} \left[Im D_V^R \right]_u^u \right\} n_{BE}(q \cdot u)$

Self-energy $\Pi_{Va}^{Total} = \Pi_{Va}^{Ideal} + \delta \Pi_{Va}$

$$\delta \Pi_{Va} = -4\pi \int \frac{d^3k}{(2\pi)^3} \delta n_a \left(k_{c.m.}^0 / T - b_i \mu_B / T \right) \frac{\sqrt{s}}{k_{c.m.}^0} f_{Va}^{c.m.} \left(s \right)$$

For the QGP

 $\frac{d^4 R^{Total}}{d^4 q} = \frac{d^4 R^{Ideal}}{d^4 q} + \frac{d^4 \delta R}{d^4 q}$

 $\frac{d^{4}\delta R}{d^{4}q} = \int \frac{d^{3}k_{1}}{(2\pi)^{3}} \frac{d^{3}k_{2}}{(2\pi)^{3}} n(k_{1} \cdot u/T - b_{i}\mu_{B}/T)\delta n(k_{2} \cdot u/T - b_{i}\mu_{B}/T)v_{12}\sigma\delta^{4}(q - k_{1} - k_{2})$ $b_{i} = \begin{cases} -1 & \text{for antibaryons} \\ 0 & \text{for mesons} \\ 1 & \text{for baryons} \end{cases} \quad b_{i} = \begin{cases} -1/3 & \text{for antiquarks} \\ 0 & \text{for gluons} \\ 1/3 & \text{for quarks} \end{cases}$

Interpolating between QGP and HM 14

• Unlike the case of high energy collisions (where T is used) to lin. interp. between HM and QGP, we now use ε

$$\frac{d^{4}R}{d^{4}q} = r_{QGP} \frac{d^{4}R_{QGP}}{d^{4}q} + (1 - r_{QGP}) \frac{d^{4}R_{HM}}{d^{4}q}$$

$$r_{QGP} = \begin{cases} 1 & \varepsilon > \varepsilon_{f} & \varepsilon_{f} \sim 3.5 \frac{GeV}{fm^{3}} \\ a\varepsilon + b & \varepsilon_{i} < \varepsilon < \varepsilon_{f} \\ 0 & \varepsilon < \varepsilon_{i} & \varepsilon_{i} \sim 1 \frac{GeV}{fm^{3}} \end{cases}$$

The ε range over which this interpolation is done is an estimate, which will be improved upon very soon.

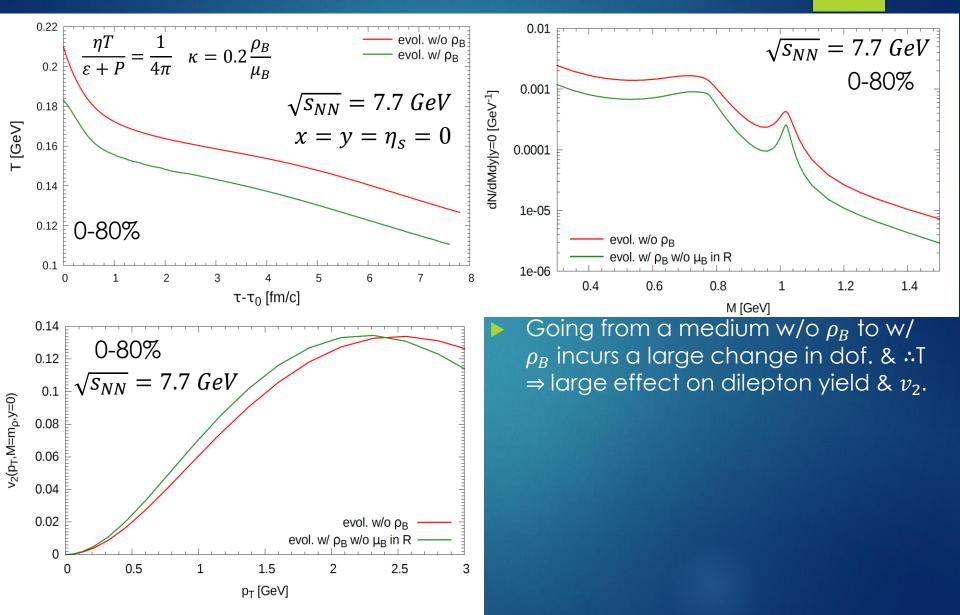
Flow coefficients

$$\frac{dN}{dMp_T dp_T d\phi dy} = \frac{1}{2\pi} \frac{dN}{dMp_T dp_T dy} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n\phi - n\Psi_n) \right]$$

Important note: v_n's are obtained via a yield weighted average of the HM and QGP sources.

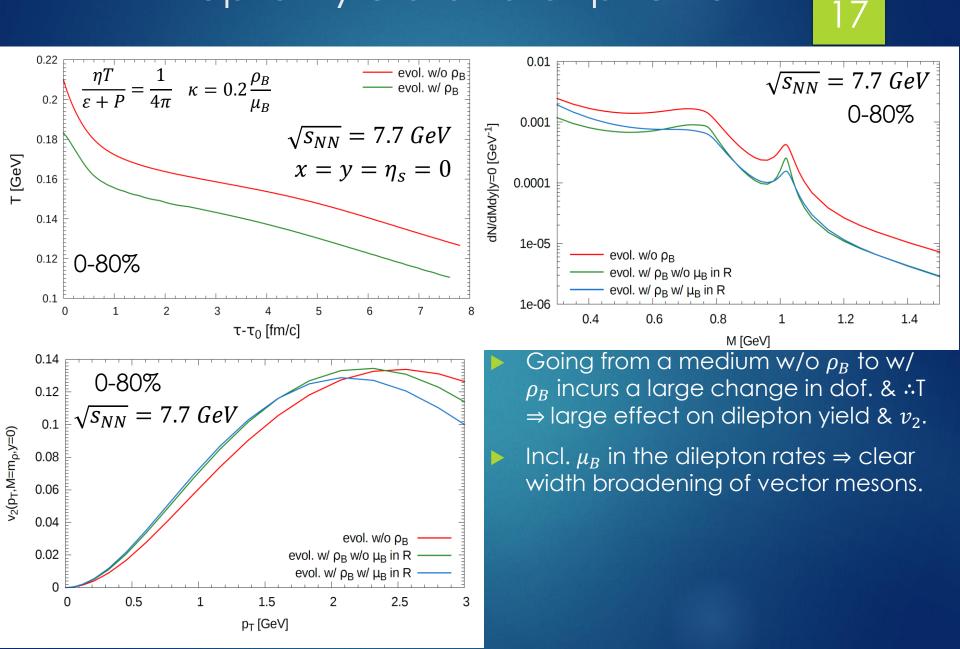
Part III: Dileptons & Dissipation

Dilepton yield and elliptic flow

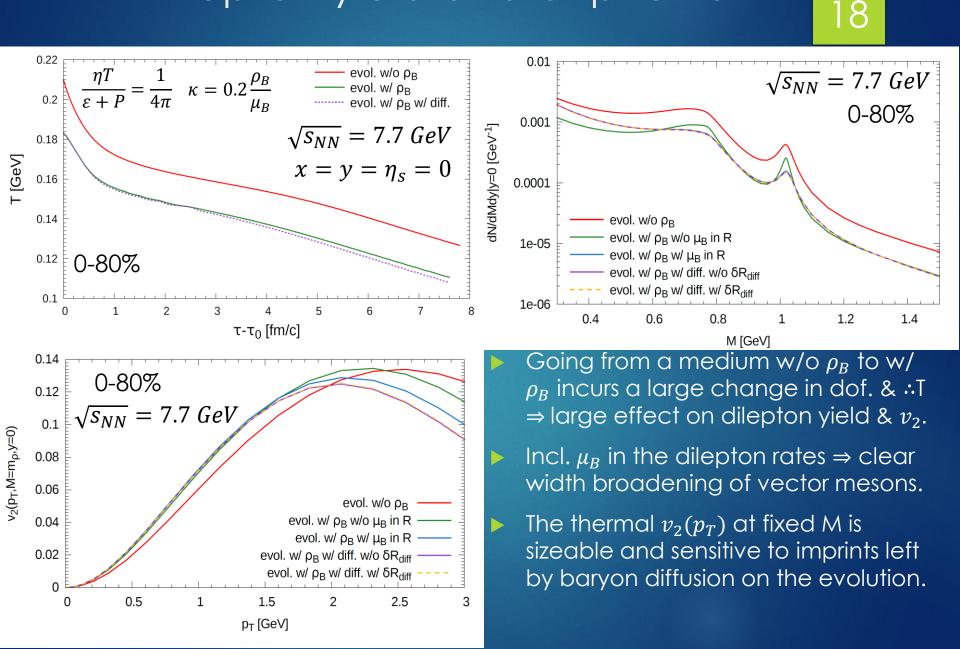


16

Dilepton yield and elliptic flow



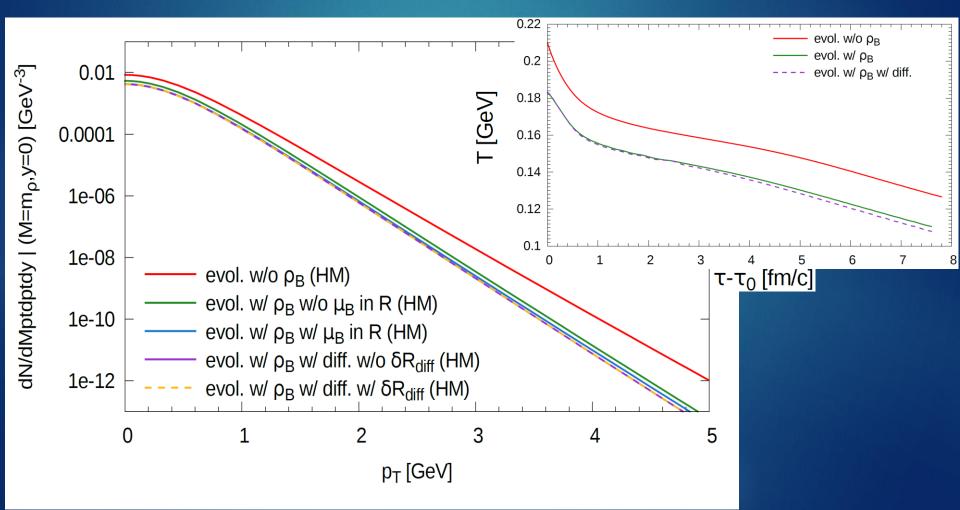
Dilepton yield and elliptic flow



Why is total v₂ decreased with μ_B&V^μ?
Recall v₂^{total} is a yield weighted avg of HM's and QGP's v₂.
v₂^{total} is reduced at high p_T because more weight is put on the QGP contribution of v₂, i.e. QGP yield remains the same while the HM yield is reduced.

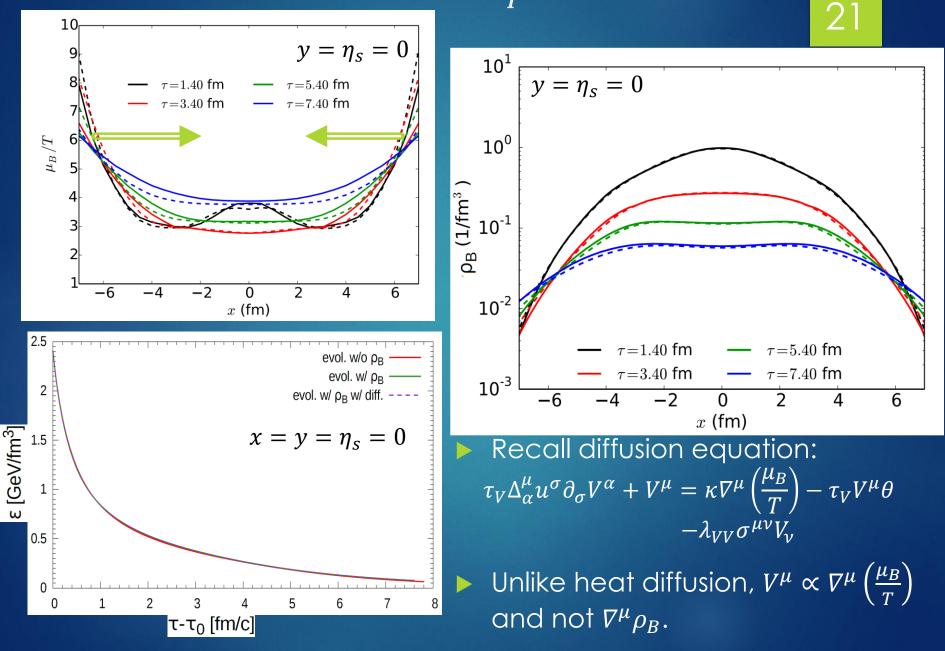
Why is total v_2 decreased with $\mu_B \& V^{\mu}$?

Dilepton HM yield decreases via width broadening of vector mesons, and also because V^{μ} further lowers the temperature of the medium in the hadronic sector.



20

How does V^{μ} change $\frac{\mu_B}{T}$, ε and T?



22

Conclusions

- A first (preliminary) dilepton calculation using 3+1D dissipative hydrodynamical evolution, shows that:
 - Width broadening of vector mesons in the medium, as expected from a nonzero μ_B , is responsible for the main new features seen in dilepton yield and v_2 , not present in the case of high energy HIC.
 - The dilepton $v_2(p_T)$ is sensitive to effects that baryon-number diffusion induces on the evolution of the medium, in the p_T region $1.5 \leq p_T \leq 3 \text{ GeV}$.
- All the ingredients are now in place to start studying the sensitivity of thermal dileptons to baryon diffusion, within a hydrodynamical context.

23

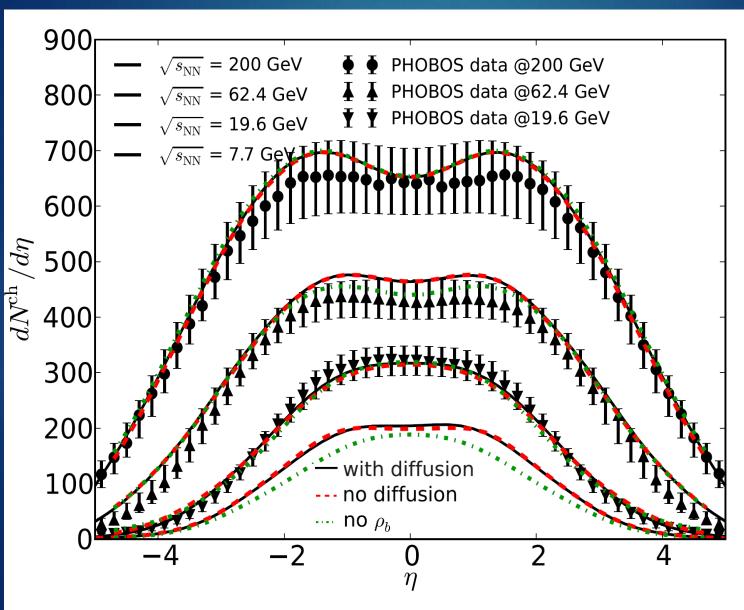
<u>Outlook</u>

- Perform a dilepton calculation using an event-by-event hydrodynamical evolution, for various parametrizations of κ , various initial conditions for V^{μ} , using improved initial conditions, and various beam energies.
- Include the effects of other dissipative degrees of freedom (e.g. Π)
- Compute dilepton production from a hadronic transport model, e.g. UrQMD, in order to have a more realistic account of the total number of dilepton produced in the context of BES.

Backup Slides

Effect of μ_B and V^{μ} on $\frac{dN^{ch}}{dN^{ch}}$ $d\eta$ VS $\sqrt{S_{NN}}$

Plots by Chun Shen; Same initial ε and freezing out at a **constant** $\varepsilon_{FO} = 0.1 \frac{GeV}{GeV}$

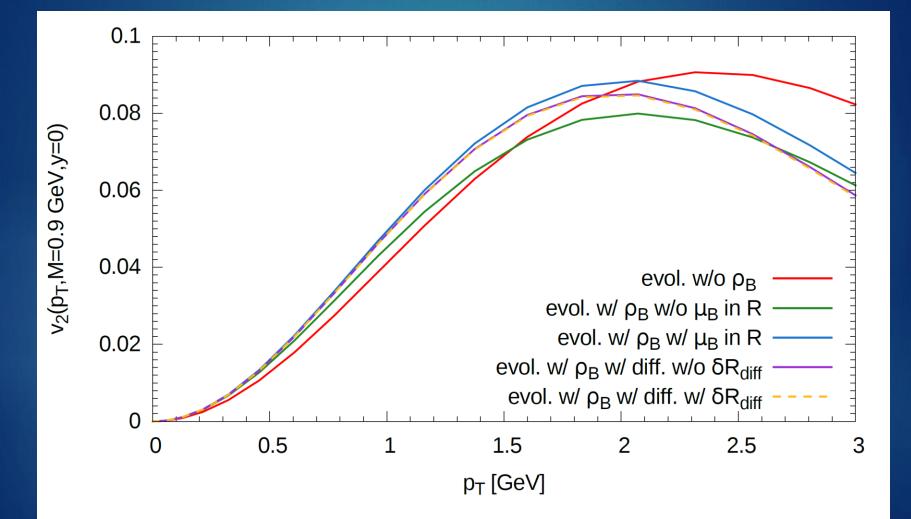


 $@ \sqrt{s_{NN}} = 7.7 \ GeV$ dN^{ch} $\frac{d\eta}{d\eta}$ w/ V^{μ} is at most 15% larger than w/o V^{μ} . $\sqrt{s_{NN}}$ scaling from PRC 85, 054902 (2012)

25

f m.³

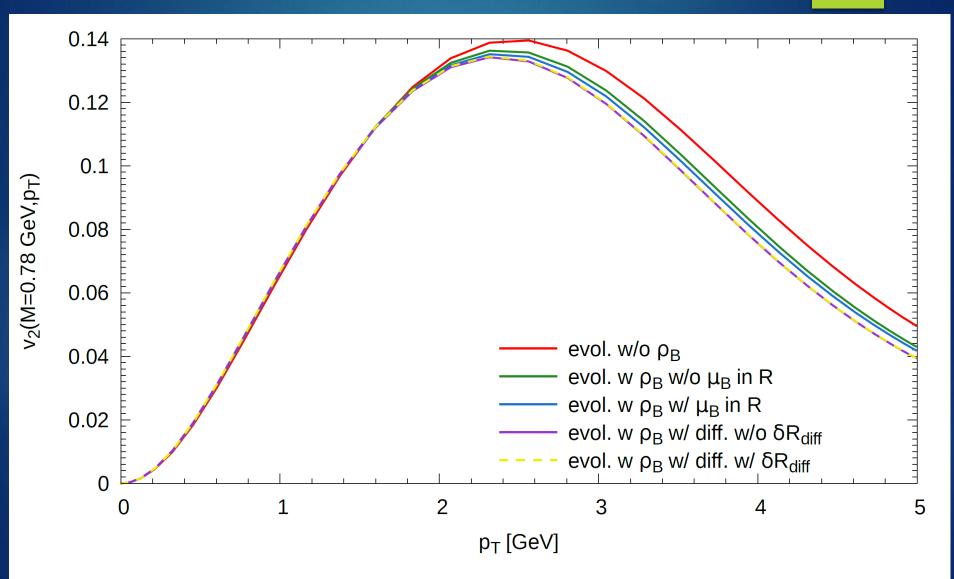
 $v_2(p_T)$ for M=0.9 GeV

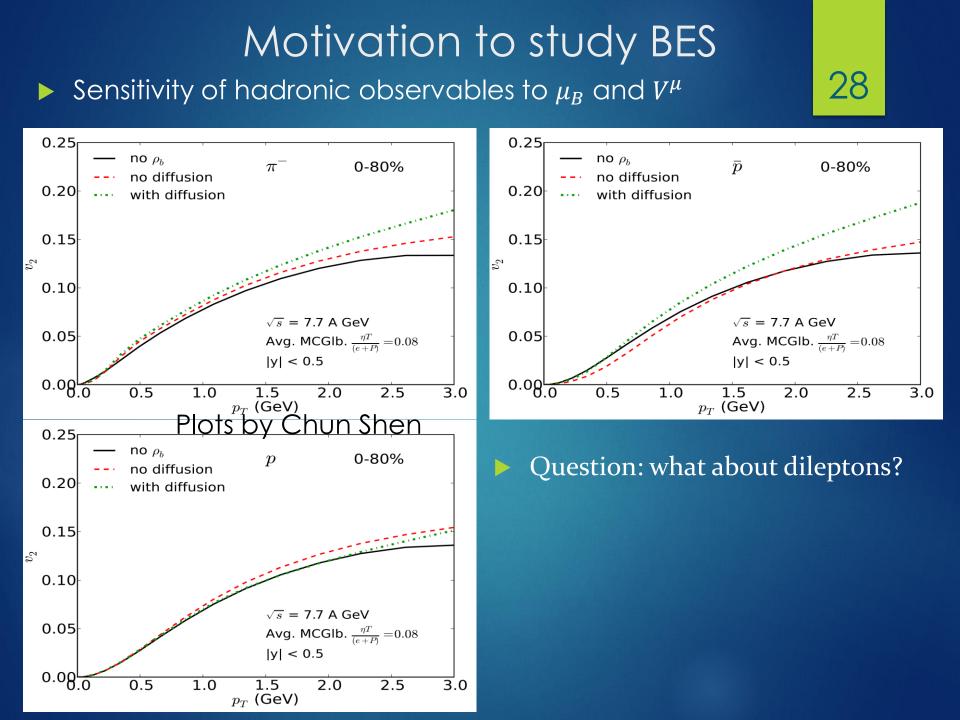


26

Variation of v_2 at $\sqrt{s_{NN}} = 19.6 \text{ GeV}$

27

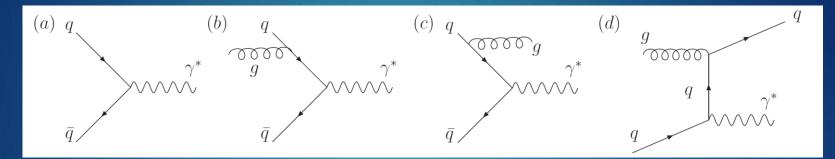




NLO QGP dilepton results

29

Some diagrams contributing at NLO



Effects on dilepton yield and elliptic flow

