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The QCD phase diagram
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Outline

= Charge fluctuations
chemical freeze-out
critical point
equation of state e

= Computational challenges

required resources
software development
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Fluctuations of conserved charges

10 1 9 I
X _ ~2 p Xy _ _P, iy = X

= are sensitive to inner structure of the medium

= for BQS ensemble
- X = baryon number (B), electric charge (Q), strangeness (S)
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Fluctuations of conserved charges

10 1 9 I
x_ 1 Y% p xy _ 1 97 p = MX

= are sensitive to inner structure of the medium

= for BQS ensemble
- X = baryon number (B), electric charge (Q), strangeness (S)

= on the Lattice

- onlyatp=20
. accessible through quark number fluctuations

B = (Ny+ Ng+ Ns) /3 1B = fu + 2fig
Q:(QN Ng—Ns)/3 = Q= Hu = fd
S=- IS = Hd — [is
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Comparison to low and high T limit

= gas of free quarks and gluons

- () e (7))
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Comparison to low and high T limit

= gas of free quarks and gluons
Psg 872 772 1 a2 1 sue\d
T4_45+zf:(60+2(r) + 22 (7)

= gas of hadrons and possible resonances

Prra 1 B 1 M
T Sy 2 ME oty > InZ

i€baryons i€mesons

VT rmin2 = (1)
Inz"/8 = ~5d (7) 3 ( k)2 Ko(km;/ T) cosh (k(Bius + Qipia + Sips)/T)
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Comparison to low and high T limit

i€baryons

X5

(xf) ) > 0 () Ke(my/T) BY
HRG

i€baryons
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Comparison to low and high T limit
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From zero to finite chemical potential

= Lattice simulations not possible at real finite
- sign problem

= Taylor expand observables around ;s =0
- simplestcase ug =0, us=0

1 1 9P

X X Ak : X QCD
X; (1) = TiXk+i B with Xi = 77 =
' zk: K LT op)

pux=0

= coefficients defined at vanishing chemical potential
- Lattice QCD techniques work
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Comparison to experiment '/-mnly at freeze-out (s, T)

Moment  Symbol Experiment Lattice
mean My (Nyx) VT3S
variance ox <(§Nx)2> VT3%
((SN)()S VT3 X

skewness Sx <3> 7X33/2
ok (VT3x%)
(0Nx)* VT34 X

kurtosis kx < y > 7X“2
Ix (VT°x5)

= volume independent ratios

2 X X X
Ix _ X2 Syoy = X3 kvo? — X4
Mi = X XOX = X’ XOx = 5%
X X1 X2 X2
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Chemical freeze-out

= determine freeze-out conditions by comparing Lattice data
with experiment
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Chemical freeze-out

= determine freeze-out conditions by comparing Lattice data
with experiment

1. fix pg and ug using initial conditions of Au-Au and Pb-Pb

-Mszo, MQZI’MB with I’Z%Z%":OA
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Chemical freeze-out

= determine freeze-out conditions by comparing Lattice data
with experiment

1. fix pg and ug using initial conditions of Au-Au and Pb-Pb

-Mszo, MQZI’MB with I’Z%Z%":OA

2. construct operator which is independent of ug in LO
- fixes T

3. use operator which is dependent of ug in LO to fix ufB

Q, N — A Q, o
R:g = = R310 + O(iiB) » Rﬁz ="q~HB ("'?121 + O(N%))

Tolés
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Chemical freeze-out
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Critical point from Taylor expansions
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Critical point from Taylor expansions

= e.g. expansion of the pressure around pg=0  (orug =ns =0

Pqcp 1 5. B 1 9"InZ
Sl SR o |
pB=
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Critical point from Taylor expansions

= e.g. expansion of the pressure around pig=0  (orug=ns=0

Pqcp 1 5. B 1 9"InZ
:ZHXnMga X":WTAE,

up=0

= analysis of convergence radius can determine bound on the
location of a critical point:

B
X2n

X2n+1

ran = ,|2n(2n—1)

= onlyif y, > 0foralln> ng
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Critical point from Taylor expansions

T [MeV]
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Equation of State of (2+1)-flavor QCD

= when does HRG break down? onset of criticality?

10
27 , A cosré(x)-1 —_—
X2+ [24+x°/720 —
[ x224x* 24 ——
6 x2/2
5 L
4
3
2
1 4
‘ ‘ X‘=}.LB/T
0 0 0.5 1 15 2 25 3

= including 6th order should be accurate up to ug/ T =3
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Equation of State of (2+1)-flavor QCD
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Project status & plans

all simulations done with physical quark masses

EoS is under controlup to ug/T = 1.5

higher orders important for ug/T > 1.5

- observe breakdown of HRG?
- relevant region for BESII

= need more statistics for higher orders and larger lattices
- requires a lot of computing time
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Computing resources

current Titan allocation

Vol « 200M core-hours  (exceptional good year)
= - o ) )
wE—— + equivalent to 5% of Titan for one year

DAk RIDGE LEADERSHIP COMPUTING FACILITY

or full Titan machine for ~16 days
largest jobs use 14k nodes and sustain 5 PFlop/s



Algorithmic improvements

= Lattice simulations dominated by Conjugate Gradient (CG)
- CG frequently used solver in many scientific fields

- many improvements known
- time consuming to validate all

method speed-up
CG

deflation 10x

noise reduction 2x

multi right-hand side 4x

pipelined formulation 1.2x

linear-p formulation 4x
total 384x

more to come: truncated solver, block CG, multi pseudo-fermion RHMC
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Importance of good software

= software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):

May 10, 2016 Patrick Steinbrecher Slide 18



Importance of good software

= software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):

« runs horrible slow

May 10, 2016 Patrick Steinbrecher Slide 18



Importance of good software

= software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):

- runs horrible slow
- gets slower with each new hardware generation

May 10, 2016 Patrick Steinbrecher Slide 18



Importance of good software

= software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):
- runs horrible slow
- gets slower with each new hardware generation
- and using it (in our case) is a huge waste of resources

May 10, 2016 Patrick Steinbrecher Slide 18



Importance of good software

= software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):
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Importance of good software
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arrays and is written in plain C, C++ (or similar):
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- gets slower with each new hardware generation
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= reason: compiler is not allowed to change data layout
- architectures work only well with a certain data layout (SoA)
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Importance of good software

= software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):

- runs horrible slow
- gets slower with each new hardware generation
- and using it (in our case) is a huge waste of resources

= mostly 20x slower than optimized code (see backup slide)

= reason: compiler is not allowed to change data layout
- architectures work only well with a certain data layout (SoA)

= need to write low-level code hidden behind a high-level
interface

- can be designed in a future-proof way
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Required computing time

= for extending our simulations up to 8th order
. e.g. on a 483x12 lattice in the low temperature region

code core-hours/temperature
optimized 180M
normal 3.6B
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Required computing time
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= our project is just not possible with unoptimized code
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Required computing time

= for extending our simulations up to 8th order
. e.g. on a 483x12 lattice in the low temperature region

code core-hours/temperature
optimized 180M
normal 3.6B

= our project is just not possible with unoptimized code

= still, 180M core-hours is a lot
- need to further improve our codes and algorithms
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New Supercomputers in 2016/17

Intel® Xeon Phi” KNL and NVIDIA® Pascal™ based

& GPU code is ready for next machines
software development focused on KNL
- our codes are part of NERSC’s exascale program



Thank you for your attention!
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Performance gains onh Haswell (dual-socket E5-2698V3, 2.3 G Hz, 32 cores)

Dslash, 32%x8, 16 right-hand sides

optimizations speedup
1 core, scalar 1x
32 cores, scalar . 27x
1 core, vectorized 25x
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