BRODKHRNEN

NATIONAL LABORATORY

Charge Fluctuations from Lattice QCD

May 10, 2016 | Patrick Steinbrecher
Bielefeld-BNL-CCNU collaboration
A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek,
F. Karsch, E. Laermann, S. Mukherjee, H. Ohno,
P. Petreczky, C. Schmidt, S. Sharma, W. Soeldner,
M. Wagner

The QCD phase diagram

Outline

- Charge fluctuations
- chemical freeze-out
- critical point
- equation of state
- Computational challenges
- required resources

- \bar{Q}
- Q
- software development

Fluctuations of conserved charges

$$
\chi_{i}^{X}=\frac{1}{T^{4}} \frac{\partial^{i}}{\partial \hat{\mu}_{X}^{i}} P_{\mathrm{QCD}}, \quad \chi_{i j}^{X Y}=\frac{1}{T^{4}} \frac{\partial^{i+j}}{\partial \hat{\mu}_{X}^{i} \partial \hat{\mu}_{Y}^{i}} P_{\mathrm{QCD}}, \quad \hat{\mu}_{X}=\frac{\mu_{X}}{T}
$$

- are sensitive to inner structure of the medium
- for BQS ensemble
- $X=$ baryon number (B), electric charge (Q), strangeness (S)

Fluctuations of conserved charges

$$
\chi_{i}^{X}=\frac{1}{T^{4}} \frac{\partial^{i}}{\partial \hat{\mu}_{X}^{i}} P_{\mathrm{QCD}}, \quad \chi_{i j}^{X Y}=\frac{1}{T^{4}} \frac{\partial^{i+j}}{\partial \hat{\mu}_{X}^{i} \partial \hat{\mu}_{Y}^{i}} P_{\mathrm{QCD}}, \quad \hat{\mu}_{X}=\frac{\mu_{X}}{T}
$$

- are sensitive to inner structure of the medium
- for BQS ensemble
- $X=$ baryon number (B), electric charge (Q), strangeness (S)
- on the Lattice
- only at $\mu=0$
- accessible through quark number fluctuations

$$
\begin{array}{ll}
B=\left(N_{u}+N_{d}+N_{s}\right) / 3 \\
Q=\left(2 N_{u}-N_{d}-N_{s}\right) / 3 \\
S=-N_{s}
\end{array} \Longrightarrow \quad \begin{aligned}
& \mu_{B}=\mu_{u}+2 \mu_{d} \\
& \mu_{Q}=\mu_{u}-\mu_{d} \\
& \mu_{S}=\mu_{d}-\mu_{s}
\end{aligned}
$$

Comparison to low and high T limit

- gas of free quarks and gluons

$$
\frac{P_{S B}}{T^{4}}=\frac{8 \pi^{2}}{45}+\sum_{f}\left(\frac{7 \pi^{2}}{60}+\frac{1}{2}\left(\frac{\mu_{f}}{T}\right)^{2}+\frac{1}{4 \pi^{2}}\left(\frac{\mu_{f}}{T}\right)^{4}\right)
$$

Comparison to low and high T limit

- gas of free quarks and gluons

$$
\frac{P_{S B}}{T^{4}}=\frac{8 \pi^{2}}{45}+\sum_{f}\left(\frac{7 \pi^{2}}{60}+\frac{1}{2}\left(\frac{\mu_{f}}{T}\right)^{2}+\frac{1}{4 \pi^{2}}\left(\frac{\mu_{f}}{T}\right)^{4}\right)
$$

- gas of hadrons and possible resonances

$$
\frac{P_{H R G}}{T^{4}}=\frac{1}{V T^{3}} \sum_{i \in \text { baryons }} \ln Z_{i}^{B}+\frac{1}{V T^{3}} \sum_{i \in \text { mesons }} \ln Z_{i}^{M}
$$

$\ln Z_{i}^{M / B}=\frac{V T^{3}}{\pi^{2}} d_{i}\left(\frac{m_{i}}{T}\right)^{2} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k^{2}} K_{2}\left(k m_{i} / T\right) \cosh \left(k\left(B_{i} \mu_{B}+Q_{i} \mu_{Q}+S_{i} \mu_{S}\right) / T\right)$

Comparison to low and high T limit

$$
\begin{gathered}
\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)_{\text {HRG }}=\frac{\sum_{i \in \text { baryons }} d_{i}\left(\frac{m_{i}}{T}\right)^{2} K_{2}\left(m_{i} / T\right) B_{i}^{4}}{\sum_{i \in \text { baryons }} d_{i}\left(\frac{m_{i}}{T}\right)^{2} K_{2}\left(m_{i} / T\right) B_{i}^{2}}=1 \\
\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)_{S B}=\frac{\frac{6 N_{t}}{81 \pi^{2}}}{\frac{N_{t}}{9}}=\frac{2}{3 \pi^{2}}
\end{gathered}
$$

Comparison to low and high T limit

From zero to finite chemical potential

- Lattice simulations not possible at real finite μ
- sign problem
- Taylor expand observables around $\mu=0$
- simplest case $\mu_{Q} \equiv 0, \mu_{S} \equiv 0$

$$
\chi_{i}^{X}\left(\mu_{B}\right)=\sum_{k} \frac{1}{k!} \chi_{k+i}^{X} \hat{\mu}_{B}^{k}, \quad \text { with } \quad \chi_{i}^{X}=\left.\frac{1}{T^{4}} \frac{\partial^{i} P_{\mathrm{QCD}}}{\partial \hat{\mu}_{X}^{i}}\right|_{\mu_{X}=0}
$$

- coefficients defined at vanishing chemical potential
- Lattice QCD techniques work

Comparison to experiment

only at freeze-out $\left(\mu_{f}, T_{f}\right)$

Moment	Symbol	Experiment	Lattice
mean	M_{X}	$\left\langle N_{X}\right\rangle$	$V T^{3} \chi_{1}^{X}$
variance	σ_{X}^{2}	$\left\langle\left(\delta N_{X}\right)^{2}\right\rangle$	$V T^{3} \chi_{2}^{X}$
skewness	S_{X}	$\frac{\left\langle\left(\delta N_{X}\right)^{3}\right\rangle}{\sigma_{X}^{3}}$	$\frac{V T^{3} \chi_{3}^{x}}{\left(V T^{3} \chi_{2}^{X}\right)^{3 / 2}}$
kurtosis	k_{X}	$\frac{\left\langle\left(\delta N_{X}\right)^{4}\right\rangle}{\sigma_{X}^{4}}-3$	$\frac{V T^{3} \chi_{4}^{X}}{\left(V T^{3} \chi_{2}^{X}\right)^{2}}$

- volume independent ratios

$$
\frac{\sigma_{X}^{2}}{M_{X}}=\frac{\chi_{2}^{X}}{\chi_{1}^{X}}, \quad S_{X} \sigma_{X}=\frac{\chi_{3}^{X}}{\chi_{2}^{X}}, \quad k_{X} \sigma_{X}^{2}=\frac{\chi_{4}^{X}}{\chi_{2}^{X}}
$$

Chemical freeze-out

- determine freeze-out conditions by comparing Lattice data with experiment

Chemical freeze-out

- determine freeze-out conditions by comparing Lattice data with experiment

1. fix μ_{Q} and μ_{S} using initial conditions of $\mathrm{Au}-\mathrm{Au}$ and $\mathrm{Pb}-\mathrm{Pb}$

- $M_{S}=0, \quad M_{Q}=r M_{B} \quad$ with $\quad r=\frac{Z}{A}=\frac{79}{197} \simeq 0.4$

Chemical freeze-out

- determine freeze-out conditions by comparing Lattice data with experiment

1. fix μ_{Q} and μ_{S} using initial conditions of $\mathrm{Au}-\mathrm{Au}$ and $\mathrm{Pb}-\mathrm{Pb}$

- $M_{S}=0, \quad M_{Q}=r M_{B} \quad$ with $\quad r=\frac{Z}{A}=\frac{79}{197} \simeq 0.4$

2. construct operator which is independent of μ_{B} in LO

- fixes T_{f}

Chemical freeze-out

- determine freeze-out conditions by comparing Lattice data with experiment

1. fix μ_{Q} and μ_{S} using initial conditions of $\mathrm{Au}-\mathrm{Au}$ and $\mathrm{Pb}-\mathrm{Pb}$

- $M_{S}=0, \quad M_{Q}=r M_{B} \quad$ with $\quad r=\frac{Z}{A}=\frac{79}{197} \simeq 0.4$

2. construct operator which is independent of μ_{B} in LO

- fixes T_{f}

3. use operator which is dependent of μ_{B} in LO to fix μ_{B}^{f}

Chemical freeze-out

- determine freeze-out conditions by comparing Lattice data with experiment

1. fix μ_{Q} and μ_{S} using initial conditions of $\mathrm{Au}-\mathrm{Au}$ and $\mathrm{Pb}-\mathrm{Pb}$

- $M_{S}=0, \quad M_{Q}=r M_{B} \quad$ with $\quad r=\frac{Z}{A}=\frac{79}{197} \simeq 0.4$

2. construct operator which is independent of μ_{B} in LO

- fixes T_{f}

3. use operator which is dependent of μ_{B} in LO to fix μ_{B}^{f}

$$
R_{31}^{Q} \equiv \frac{\chi_{3}^{Q}}{\chi_{1}^{Q}}=R_{31}^{Q, 0}+\mathcal{O}\left(\hat{\mu}_{B}^{2}\right), \quad R_{12}^{Q} \equiv \frac{\chi_{1}^{Q}}{\chi_{2}^{Q}}=\hat{\mu}_{B}\left(R_{12}^{Q, 1}+\mathcal{O}\left(\hat{\mu}_{B}^{2}\right)\right)
$$

Chemical freeze-out

$$
\left.R_{31}^{Q}\right|_{\exp }(\sqrt{s})=\left.R_{31}^{Q}\right|_{\text {lat }}\left(T_{f}\right)
$$

$$
\left.R_{12}^{Q}\right|_{\exp }(\sqrt{s})=\left.R_{12}^{Q}\right|_{\text {lat }}\left(\mu_{B}^{f} / T_{f}\right)
$$

Critical point from Taylor expansions

Critical point from Taylor expansions

- e.g. expansion of the pressure around $\mu_{B}=0 \quad$ (for $\mu_{Q} \equiv \mu_{S} \equiv 0$)

$$
\frac{P_{\mathrm{QCD}}}{T^{4}}=\sum_{n} \frac{1}{n!} \chi_{n}^{B} \hat{\mu}_{B}^{n}, \quad \chi_{n}^{B}=\left.\frac{1}{V T^{3}} \frac{\partial^{n} \ln Z}{\partial \hat{\mu}_{B}^{n}}\right|_{\mu_{B}=0}
$$

Critical point from Taylor expansions

- e.g. expansion of the pressure around $\mu_{B}=0 \quad$ (for $\mu_{Q} \equiv \mu_{S} \equiv 0$)

$$
\frac{P_{\mathrm{QCD}}}{T^{4}}=\sum_{n} \frac{1}{n!} \chi_{n}^{B} \hat{\mu}_{B}^{n}, \quad \chi_{n}^{B}=\left.\frac{1}{V T^{3}} \frac{\partial^{n} \ln Z}{\partial \hat{\mu}_{B}^{n}}\right|_{\mu_{B}=0}
$$

- analysis of convergence radius can determine bound on the location of a critical point:

$$
r_{2 n}=\sqrt{2 n(2 n-1)\left|\frac{\chi_{2 n}^{B}}{\chi_{2 n+1}^{B}}\right|}
$$

- only if $\chi_{n}>0$ for all $n \geq n_{0}$

Critical point from Taylor expansions

Equation of State of $(2+1)$-flavor QCD

- when does HRG break down? onset of criticality?

- including 6th order should be accurate up to $\mu_{B} / T=3$

Equation of State of $(2+1)$-flavor QCD

Project status \& plans

- all simulations done with physical quark masses
- EoS is under control up to $\mu_{B} / T=1.5$
- higher orders important for $\mu_{B} / T>1.5$
- observe breakdown of HRG?
- relevant region for BESII
- need more statistics for higher orders and larger lattices
- requires a lot of computing time

Computing resources

- current Titan allocation
- 200M core-hours (exceptional good year)
- equivalent to 5% of Titan for one year
- or full Titan machine for ~ 16 days
- largest jobs use 14 k nodes and sustain 5 PFlop/s

Algorithmic improvements

- Lattice simulations dominated by Conjugate Gradient (CG)
- CG frequently used solver in many scientific fields
- many improvements known
- time consuming to validate all

	method	speed-up
CG		
	deflation	$10 x$
	noise reduction	$2 x$
	multi right-hand side	$4 x$
	pipelined formulation	$1.2 x$
-	linear- μ formulation	$4 x$
total		$384 x$

more to come: truncated solver, block CG, multi pseudo-fermion RHMC

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):
- runs horrible slow

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):
- runs horrible slow
- gets slower with each new hardware generation

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):
- runs horrible slow
- gets slower with each new hardware generation
- and using it (in our case) is a huge waste of resources

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):
- runs horrible slow
- gets slower with each new hardware generation
- and using it (in our case) is a huge waste of resources
- mostly 20x slower than optimized code (see backup slide)

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):
- runs horrible slow
- gets slower with each new hardware generation
- and using it (in our case) is a huge waste of resources
- mostly 20x slower than optimized code (see backup slide)
- reason: compiler is not allowed to change data layout
- architectures work only well with a certain data layout (SoA)

Importance of good software

- software which has a higher complexity than just adding two arrays and is written in plain C, C++ (or similar):
- runs horrible slow
- gets slower with each new hardware generation
- and using it (in our case) is a huge waste of resources
- mostly 20x slower than optimized code (see backup slide)
- reason: compiler is not allowed to change data layout
- architectures work only well with a certain data layout (SoA)
- need to write low-level code hidden behind a high-level interface
- can be designed in a future-proof way

Required computing time

- for extending our simulations up to 8th order
- e.g. on a $48^{3} \times 12$ lattice in the low temperature region

code	core-hours/temperature
optimized	180 M
normal	3.6 B

Required computing time

- for extending our simulations up to 8th order
- e.g. on a $48^{3} \times 12$ lattice in the low temperature region

code	core-hours/temperature
optimized	180 M
normal	3.6 B

- our project is just not possible with unoptimized code

Required computing time

- for extending our simulations up to 8th order
- e.g. on a $48^{3} \times 12$ lattice in the low temperature region

code	core-hours/temperature
optimized	180 M
normal	3.6 B

- our project is just not possible with unoptimized code
- still, 180 M core-hours is a lot
- need to further improve our codes and algorithms

New Supercomputers in 2016/17

- Intel ${ }^{\circledR}$ Xeon Phi" KNL and NVIDIA ${ }^{\oplus}$ Pascal"' based
- GPU code is ready for next machines
- software development focused on KNL
- our codes are part of NERSC's exascale program

Thank you for your attention!

Performance gains on Haswell

Dslash, $32^{3} \times 8,16$ right-hand sides

optimizations

1 core, scalar

32 cores, scalar27x

1 core, vectorized \square $25 x$

32 cores, vectorized \square560x

