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The QCD phase diagram

Baryon Chemical Potential - 

RHIC
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Outline

Charge fluctuations
chemical freeze-out
critical point
equation of state

Computational challenges
required resources
software development
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Fluctuations of conserved charges

χX
i =

1
T 4

∂ i

∂µ̂i
X

PQCD , χXY
ij =

1
T 4

∂ i+j

∂µ̂i
X∂µ̂

j
Y

PQCD , µ̂X =
µX

T

are sensitive to inner structure of the medium

for BQS ensemble
X = baryon number (B), electric charge (Q), strangeness (S)

on the Lattice
only at µ = 0
accessible through quark number fluctuations
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B = (Nu + Nd + Ns) /3
Q = (2Nu − Nd − Ns) /3 =⇒
S = −Ns

µB = µu + 2µd

µQ = µu − µd

µS = µd − µs
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Comparison to low and high T limit

gas of free quarks and gluons

PSB

T 4 =
8π2

45
+
∑

f

(
7π2

60
+

1
2

(µf

T

)2
+

1
4π2

(µf

T

)4
)

gas of hadrons and possible resonances

PHRG

T 4 =
1

VT 3

∑
i∈baryons

ln Z B
i +

1
VT 3

∑
i∈mesons

ln Z M
i

ln Z M/B
i =

VT 3

π2 di

(mi

T

)2 ∞∑
k=1

(±1)k+1

k2 K2(kmi/T ) cosh (k(BiµB + QiµQ + SiµS)/T )
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Comparison to low and high T limit

(
χB

4

χB
2

)
HRG

=

∑
i∈baryons

di
(mi

T

)2 K2(mi/T ) B4
i∑

i∈baryons
di
(mi

T

)2 K2(mi/T ) B2
i

= 1

(
χB

4

χB
2

)
SB

=

6Nf
81π2

Nf
9

=
2

3π2
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Comparison to low and high T limit

T [MeV]

χ4
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From zero to finite chemical potential

Lattice simulations not possible at real finite µ
sign problem

Taylor expand observables around µ = 0
simplest case µQ ≡ 0, µS ≡ 0

χX
i (µB) =

∑
k

1
k !
χX

k+i µ̂
k
B , with χX

i =
1

T 4
∂ iPQCD

∂µ̂i
X

∣∣∣∣∣
µX=0

coefficients defined at vanishing chemical potential
Lattice QCD techniques work
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Comparison to experiment

Moment Symbol Experiment Lattice

mean MX 〈NX 〉 VT 3χX
1

variance σ2
X

〈
(δNX )

2
〉

VT 3χX
2

skewness SX

〈
(δNX )

3
〉

σ3
X

VT 3χX
3(

VT 3χX
2

)3/2

kurtosis kX

〈
(δNX )

4
〉

σ4
X

− 3
VT 3χX

4(
VT 3χX

2

)2

volume independent ratios

σ2
X

MX
=
χX

2

χX
1
, SXσX =

χX
3

χX
2
, kXσ

2
X =

χX
4

χX
2
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only at freeze-out (µf , Tf )



Chemical freeze-out

determine freeze-out conditions by comparing Lattice data
with experiment

1. fix µQ and µS using initial conditions of Au-Au and Pb-Pb
MS = 0 , MQ = rMB with r = Z

A = 79
197 ' 0.4

2. construct operator which is independent of µB in LO
fixes Tf

3. use operator which is dependent of µB in LO to fix µf
B

RQ
31 ≡

χQ
3

χQ
1

= RQ,0
31 +O(µ̂2

B) , RQ
12 ≡

χQ
1

χQ
2

= µ̂B

(
RQ,1

12 +O(µ̂2
B)
)
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Chemical freeze-out
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Critical point from Taylor expansions

e.g. expansion of the pressure around µB =0 (for µQ ≡ µS ≡ 0)

PQCD

T 4 =
∑

n

1
n!
χB

n µ̂
n
B , χB

n =
1

VT 3
∂n ln Z
∂µ̂n

B

∣∣∣∣
µB=0

analysis of convergence radius can determine bound on the
location of a critical point:

r2n =

√√√√2n(2n − 1)

∣∣∣∣∣ χB
2n

χB
2n+1

∣∣∣∣∣
only if χn > 0 for all n ≥ n0
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Critical point from Taylor expansions
T

 [
M

e
V

]

estimator for µ
c
B: rnT [MeV]
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Equation of State of (2+1)-flavor QCD

when does HRG break down? onset of criticality?
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cosh(x)-1
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including 6th order should be accurate up to µB/T = 3
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Equation of State of (2+1)-flavor QCD
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√
s = 19.6 GeV 7.7 GeV



Project status & plans

all simulations done with physical quark masses

EoS is under control up to µB/T = 1.5

higher orders important for µB/T > 1.5
observe breakdown of HRG?
relevant region for BESII

need more statistics for higher orders and larger lattices
requires a lot of computing time
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·; ·; ·;·;·;
·;·;·

current Titan allocation
200M core-hours (exceptional good year)

equivalent to 5% of Titan for one year
or full Titan machine for ∼16 days

largest jobs use 14k nodes and sustain 5 PFlop/s

Computing resources



Algorithmic improvements

Lattice simulations dominated by Conjugate Gradient (CG)
CG frequently used solver in many scientific fields
many improvements known

time consuming to validate all

method speed-up

CG
deflation 10x
noise reduction 2x
multi right-hand side 4x
pipelined formulation 1.2x

-
linear-µ formulation 4x

total 384x

more to come: truncated solver, block CG, multi pseudo-fermion RHMC
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Importance of good software

software which has a higher complexity than just adding two
arrays and is written in plain C, C++ (or similar):

runs horrible slow
gets slower with each new hardware generation
and using it (in our case) is a huge waste of resources

mostly 20x slower than optimized code (see backup slide)

reason: compiler is not allowed to change data layout
architectures work only well with a certain data layout (SoA)

need to write low-level code hidden behind a high-level
interface

can be designed in a future-proof way
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Required computing time

for extending our simulations up to 8th order
e.g. on a 483×12 lattice in the low temperature region

code core-hours/temperature

optimized 180M
normal 3.6B

our project is just not possible with unoptimized code

still, 180M core-hours is a lot
need to further improve our codes and algorithms
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·; ·; ·;·;
Intel R© Xeon PhiTM KNL and NVIDIA R© PascalTM based
GPU code is ready for next machines
software development focused on KNL

our codes are part of NERSC’s exascale program

New Supercomputers in 2016/17

·



Thank you for your attention!
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Performance gains on Haswell
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(dual-socket E5-2698V3, 2.3 GHz, 32 cores)

Dslash, 323×8, 16 right-hand sides

optimizations speedup

1 core, scalar

32 cores, scalar

1 core, vectorized

32 cores, vectorized

1x

27x

25x

560x


