Topical Workshop on Beam Energy Scan 2016

Vorticity-Driven Effects in Rotating Quark-Gluon Plasma

Yin Jiang

Indiana University, Physics Dept. & CEEM

In collaboration with Ziwei Lin, Xuguang Huang and

Jinfeng Liao

Outline

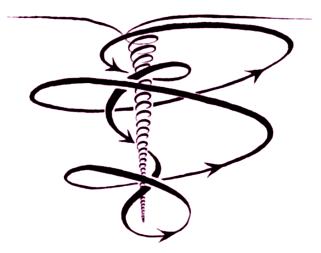
- Introduction
- Vorticity in the QGP (arXiv:1602.06580)
- Vorticity effects on phase transition(in preparation)
- Chiral vortical wave (Phys. Rev. D 92, 071501).
- Conclusions

Introduction

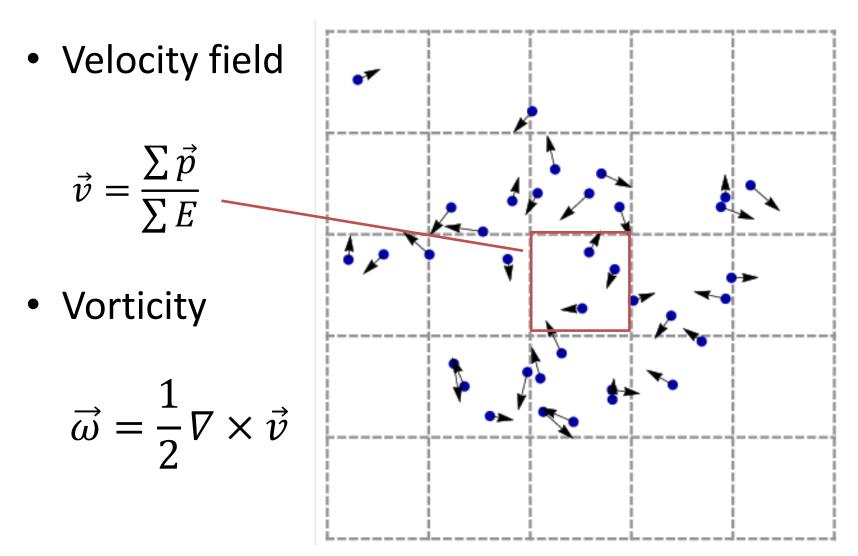
- In HIC large momentum and finite impact parameter will generate large angular momentum, *vorticity* and magnetic field.
- Energy shift for charge-blind polarization will change the phase diagram.
- Anomalous transport will generate the *Chiral Vortical Wave*.

How large is the vorticity in HIC?

- ✓ Sizeable amplitude
- ✓ Relatively long life time

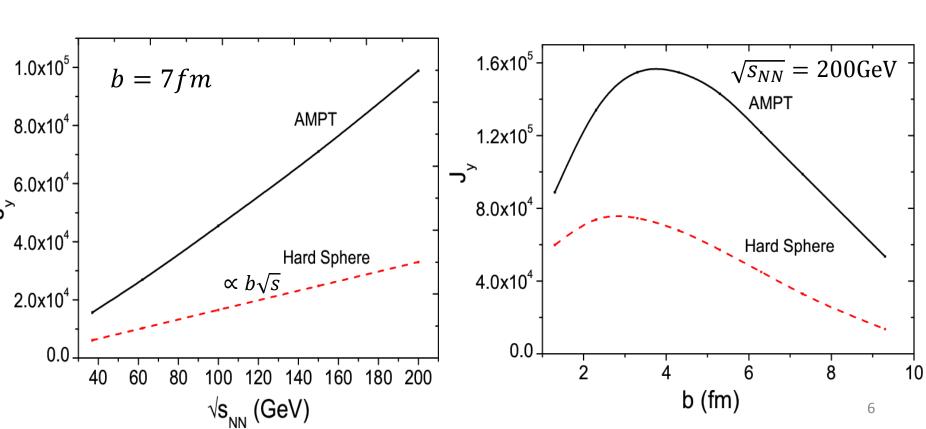


AMPT simulation



Angular momentum in QGP

- \sqrt{s} and b dependence
- AMPT simulation 10%~20% *J*_{tot}



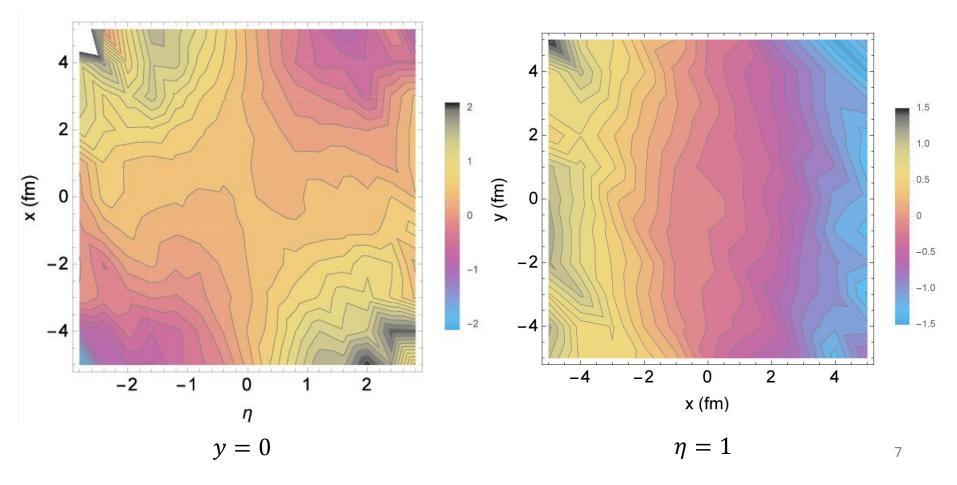
ΛY

→ X

Vorticity in QGP

• ω_y dominates

Au-Au@ $\sqrt{s_{NN}} = 200 \ GeV$, b = 7.3 fm



Understanding with radial flow

• For a background radial velocity \hat{e}_{ρ} Even of η

 $v(\rho,\phi,\eta) = v_0(\rho)[1 + 2c_2(\rho,\eta)\cos(2\phi)]$

• Vorticity $\vec{\omega} = \frac{1}{2} \nabla \times \vec{v}$

$$\omega_{y} = \frac{2v_{0}}{t} ch^{2} \eta \left[\partial_{\eta} c_{2} \cos(2\phi) \right] \cos(\phi)$$

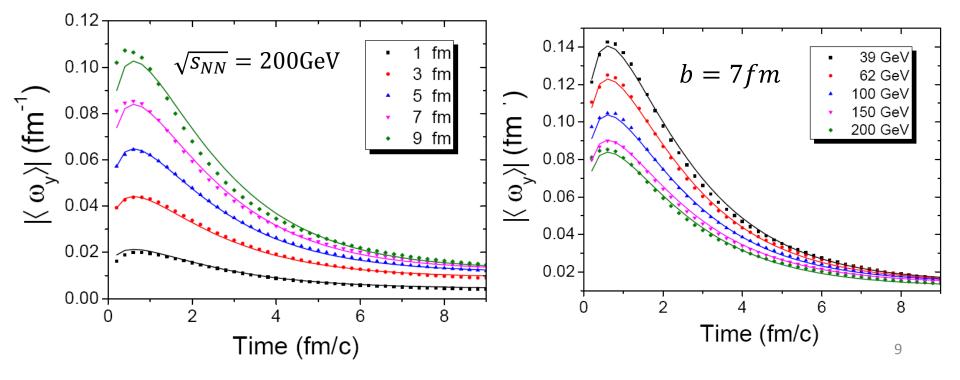
$$y = 0, x > 0, \omega_y = \frac{2\nu_0}{t} ch^2 \eta \left[\partial_\eta c_2\right]$$

$$y = 0, x < 0, \omega_y = \frac{2\nu_0}{t}ch^2\eta [-\partial_\eta c_2]$$

Averaged Vorticity in QGP

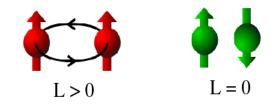
- Averaged with moment of inertia $\rho^2 \epsilon(r)$
- Fitting formula for potential application arXiv:1602.06580

$$\langle \omega_y \rangle = A(b, \sqrt{s_{NN}}) + B(b, \sqrt{s_{NN}})(0.58 t)^{0.35} e^{-0.58 t}$$



Vortical effects on phase transition

- ✓ Inhomogeneous condensates
- ✓ Spin 0 condensates are weaken
- Phase transition order changes



NJL model with rotation

• Mean field approximation gives

$$H = \left(i\gamma^{0} \vec{\gamma} \cdot \vec{\partial} + M \gamma^{0}\right) - \vec{J} \cdot \vec{\omega}$$

where $M(\vec{r}) = m_0 - 2 G \langle \bar{\psi}\psi \rangle$.

• Free energy

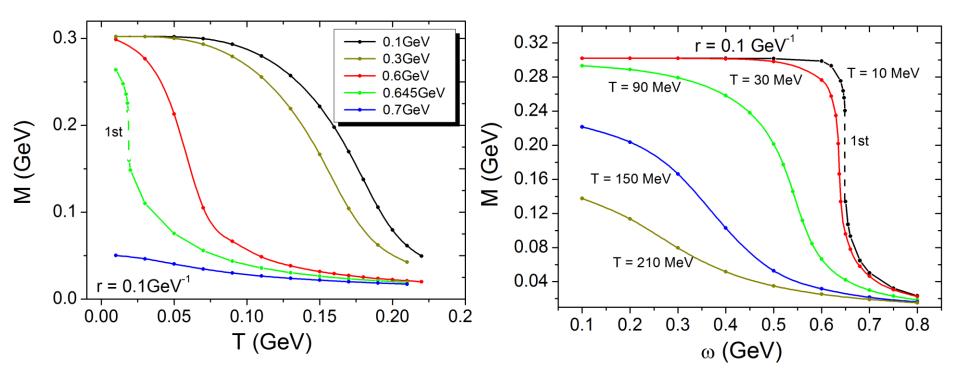
$$\Omega = \int d^3r \left\{ \frac{(M-m_0)^2}{4G} \right\}$$

$$-\Sigma_{nk_t^2k_z} 2T(J_n^2 + J_{n+1}^2) \left[\ln\left(1 + e^{\frac{\epsilon_n}{T}}\right) + \ln\left(1 + e^{\frac{-\epsilon_n}{T}}\right)\right]\right\}$$

Chiral phase transition

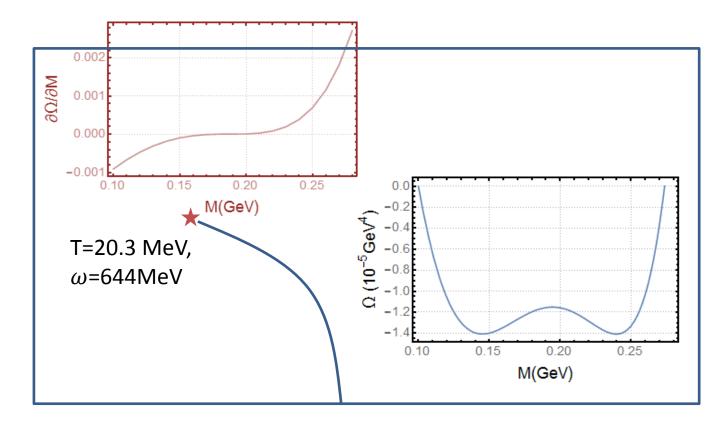
• Large ω : 1st order; small ω : cross-over

 $\delta\Omega/\delta M = 0; \ \delta^2\Omega/\delta M^2 \ge 0$



New Critical end point

• There should be a critical end point(2^{nd} order) in T- ω phase diagram.

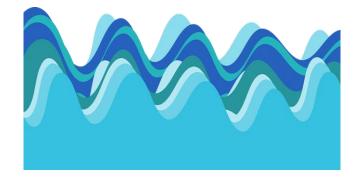


More details

- Rotation will weaken spin 0 condensate. And it may enhance those nonzero ones.
- T- ω phase diagram is similar to T- μ diagram, i.e. 1st order PT and CEP.
- New phase diagram will produce new EOS. 1st order
 PT will contribute largely to the moment of inertia.
- ✓ System size: $\omega R < 1$.
- ✓ Relativistic case: rotation generates space dependence.

Transport effects induced by vorticity

✓ Chiral vortical wave



✓ Quadrupole of hadron distribution

Spin-Vorticity Coupling

• Charge blind polarization effect

$$\Delta H = -\vec{S} \cdot \vec{\omega}$$

- Right ones tend to move along vorticity;
- Left ones in the opposite direction.

W

B

B

B

CVE and axial CVE

• Leading terms of CVE and axial CVE

$$\vec{J}_A = \left(\frac{T^2}{6} + \frac{\mu^2 + \mu_5^2}{2\pi^2}\right) \vec{\omega}, \qquad \vec{J}_V = \frac{\mu\mu_5}{\pi^2} \vec{\omega}$$

$$\vec{J}_A \wedge \vec{J}_A \wedge \vec{J}_A \wedge \vec{J}_A \wedge \vec{J}_A$$

• Rotating to chirality basis

$$\vec{J}_{L,R} = \left(\mp \frac{T^2}{12} \mp \frac{\mu_{L,R}^2}{\pi^2} \right) \vec{\omega}$$

Chiral Vortical Wave

- These effects generate a new collective mode.
- Combining with current conservation

$$\partial_t n_{L,R} + \nabla \cdot \vec{J}_{L,R} = 0$$

and assuming
$$\mu_{L,R} = \alpha n_{L,R}$$
 where $\alpha = \frac{\partial \mu}{\partial n}$.

• Wave equation

$$\partial_t n_{L,R} = \pm \frac{\omega \alpha^2}{\pi^2} \partial_x (n_{L,R}^2)$$
 linearize $\pm \frac{2\omega \alpha^2}{\pi^2} n_0 \partial_x (n_{L,R})$

Linearization

• With a background quark density n_0

$$\partial_t n_{L,R} = \pm \frac{2\omega\alpha^2}{\pi^2} n_0 \partial_x(n_{L,R})$$

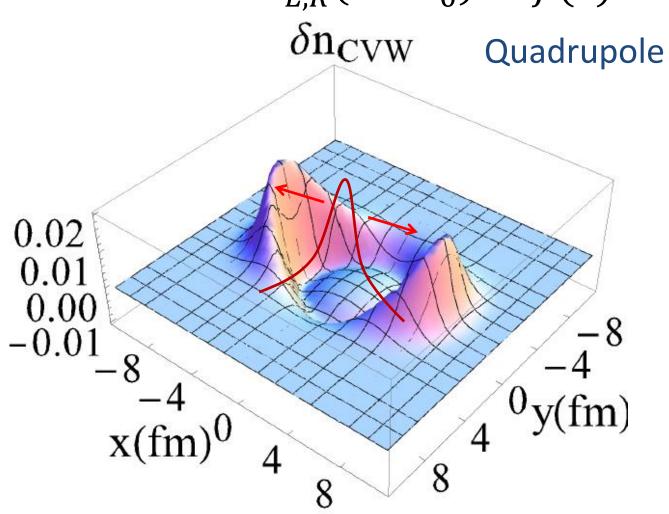
• Wave solution

$$n_{L,R} = f(x, y \pm \frac{2\omega\alpha^2}{\pi^2} n_0 t)$$

velocity

Wave solution

• Initial condition $n_{L,R}(t = t_0) = f(\vec{r})$



Quadrupole

• CVW would generate a quadrupole moment for hadron density eventually.

$$\mu_f = \frac{\mu_0}{3} - 2q_\Omega^f \cos(2\phi_s)$$

- Evolution stops at the end of QGP.
- It could be detected by the v_2 splitting of hadrons and anti hadrons.

Observables

• Quark chemical potential

$$\mu_{u,d,s} = \frac{\mu_0}{3} - 2q_{\Omega}^{u,d,s}\cos(2\phi_s)$$

Hadrons chemical potential

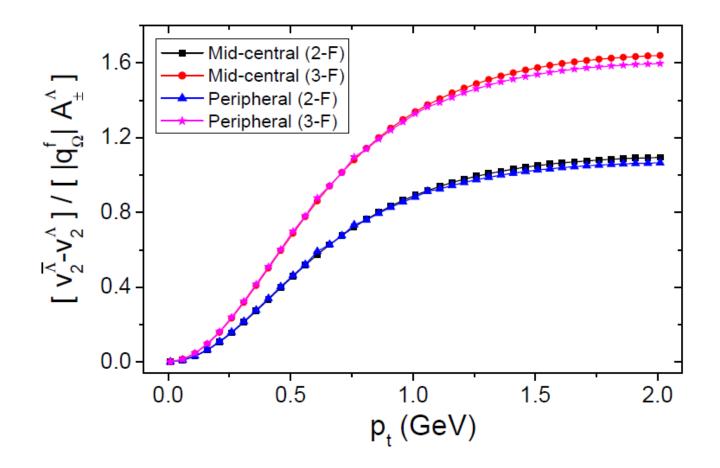
$$\mu_{\Lambda} = \mu_0 - 2(q_{\Omega}^f + q_{\Omega}^f + fq_{\Omega}^f)\cos(2\phi_s)$$

Background chemical potential

$$A^{H}_{\pm} = \frac{N^{H} - N^{\overline{H}}}{N^{H} + N^{\overline{H}}} \propto \mu_{0}$$

 v_2 difference

• For small q_{Ω}^{f} , $v_{2}(\overline{H}) - v_{2}(H) \propto q_{\Omega}^{f} A_{\pm}^{H} \propto q_{\Omega}^{f} \mu_{0}$



Conclusions

- In heavy ion collision the fireball carries a large angular momentum and vorticity (AMPT model) .
- Vorticity will weaken spin 0 condensate. And it may enhance those nonzero ones.
- The *Chiral Vortical Wave* will change the hadron distribution. This effect could be detected by the

 v_2 difference between anti-baryon and baryon.

Thank you for your attention!