

Beam-Related Background Analysis for Jet/Etmiss Physics

B. Meirose and F.Ahles

Thanks to: S. Caron, R.J. Teuscher, A.A. Nepomuceno, D. Berge, W. Kozaneck, H. Okawa

1

Outline

- Beam-Gas
- Single-Beam
- J1
- Jet EM fraction
- Conclusions/Future Work

Beam-Gas

Beam-Gas (Monte Carlo)

• Beam-gas interactions comprise the second term of machine-induced backgrounds (MIB).

• The quality of the Etmiss reconstruction depends strongly on the ability to reject accelerator- and detector-related backgrounds.

• We used 10 TeV collision expectancy samples (97279 events).

MC simulates impact of protons on H/C/O at rest.

Beam-Gas MC (10 TeV)

 $Jet EM Fraction = \frac{(Sum of Energy Deposit in jet in EMB, EMEC)}{(Sum of Energy Deposit in jet for all layers)}$

Beam-Gas MC (10 TeV, JetEt > 10 GeV)

Beam-Gas event (Monte Carlo)

This simulated beam gas event is predicting a 106 GeV jet transverse energy event (so 106 GeV MET).

ET = 105.896 GeV
E = 188.763 GeV

$$\eta = 1.181$$

 $\Phi = 321.794^{\circ}$ (5.616 rad)

Beam-Halo MC

(1.00 E+05 events)

Single-Beam

SB run 88069

• Changed run for a more suitable one for beambackground studies (thanks to D. Berge)

• 2008-09-11

No TRT, no RPC, no LAr.

- Jet energies are higher then I expected (still splashes?)
- Other possibilty would be run 88128 but it has very low statistics and no jets.

15

Beam-gas estimates

 No straightforward way of estimating the expected rate of beam-gas or beam-halo, since it depends on the beam conditions.

• Our strategy was to make a first estimate based on previous work by Boonekamp et al.

• We considered two scenarios: close to interaction point (IP) and whole ATLAS cavity.

Source

Boonekamp et al: "Cosmic Ray, Beam-Halo and Beam-Gas Rate Studies for ATLAS Commissioning"

- numbers for 2 month of single beam run with 30% efficiency
- reduction factor of 200 compared to high lumi run

Beam Halo:

- only muons are taken into account
- vacuum quality of 3·10⁻⁸ Torr
- secondaries with E < 20 MeV discarded</p>

Beam Gas:

- gas composition: H₂, CH₄, CO, CO₂
- 10¹³ molecules/m³ and molecule species
- assuming uniform densities throughout the whole cavern

Beam Gas

Window (z)	Rate (kHz)	Total numbers of events
$\pm~23~\mathrm{m}$	60	1.1×10^{11}
\pm 3.5 m	9	1.7×10^{10}
$\pm~20~\mathrm{cm}$	0.6	1.0×10^{9}

Inelastic beam-gas collision rates integrated over whole ATLAS cavity (23 m) Inner Detector acceptance (3.5 m) close to IP (20 cm)

The rate of beam-gas interactions is proportional to the beam intensity and residual gas pressure in the beam pipe.

Total numbers of events correspond to 2 months single beam with 30% data taking efficiency

Estimation

assuming LHC Luminosity: $2 \cdot 10^{33}$ cm⁻²s⁻¹ = $2 \cdot 10^{-3}$ pb⁻¹s⁻¹ for integrated luminosity of 100 pb⁻¹ we need $5 \cdot 10^4$ s

Number of events for 100pb⁻¹, worst and best case scenarios

Beam Halo

	Rate/Hz	Total number of events
close to IP	20	1.00E+06
whole cav.	11800	5.90E+08

Beam Gas

	Rate/kHz	Total number of events
close to IP	120	6.00E+09
whole cav.	12000	6.00E+11

J1 Samples

 $Jet EM Fraction = \frac{(Sum of Energy Deposit in jet in EMB, EMEC)}{(Sum of Energy Deposit in jet for all layers)}$

Jet EM fraction for jet ET > 10 GeV

Conclusions/Future Work

Waiting for new beam-halo samples.

- Trying to identify beam-gas events in single-beam (if any) based on what I see in simulations (energy, eta, phi etc).
- Jet EM fraction was not great as I expected to clean the beam-gas, but shows that even for the the very worst scenario it is not a very worrying problem (low rate).
- We will also try run 88128, see what happens.
- We expect jet EM fraction to work better for beamhalo.

Back-up

Jet EMF for cosmics

Beam-Halo

Beam Halo

Particle species	Flux (kHz)
All	1750
Charged hadrons	1515
Neutrons	130
Muons	105

Total beam-halo particle flux for single beam (taken from the note)

Detector	Rate (Hz)	Total number of events
MDT (end-cap)	59	1.0×10^{8}
MDT (barrel)	29	$5.2{ imes}10^{7}$
TRT	15	2.7×10^{7}
SCT	29	4.9×10^{7}
Pixels	0.4	$6.7{ imes}10^5$
EM calorimeter	1.2	2.1×10^{6}
Tile calorimeter	1.3	2.3×10^{6}
HEC	0.3	$5.3{ imes}10^{5}$
FCAL	0.1	$1.8{ imes}10^{5}$

Beam halo muon rates for subsystems for single beam (taken from the note)

Total numbers of events correspond to 2 months single beam with 30% data taking efficiency

LAr was off for 88069

Z (m)

