MET with pile-up

- Effect of pile-up on Missing Et
 - Twice as much energy in the calorimeter
 - Out-of-coverage effect grows as $\sqrt{Nevents}$

- Bias increases with vertex multiplicity
- Leptonic-filtered $Z \rightarrow \tau \tau$ (#105188) with True MET > 20 GeV

HCW - Lisbon - June 2009

Michele Consonni

Offset subtraction

- Measure offset
 - As function of Eta, N_{VTX} , L
 - From soft part in the same event
 - From minimum bias
- Subtract offset from all clusters/towers
 - Remove energies that fall below zero!
- Recompute MET

Algorithm Flow

USE AS INPUT TO JETS AND MISSING ET

Tower-based subtraction

- Use TopoTowers:
 - Fixed area
 - Noise suppressed
- Implementation in MissingET package is ready
- Possible only from ESD!
 - After so much effort to have MET from AOD...
- Implemented also a general tower based MET calculation
 - To converge with possible jet calibration schemes

Cluster-based subtraction

- Use TopoClusters:
 - AOD-based
 - Need a reasonable area definition
 - Need to deal with overlapping clusters
- Cluster radius = $\sqrt{\langle r^2 \rangle}$
 - Energy-weighted RMS of distance from the centre
 - Derive ΔEta and ΔPhi
 - Compare to tower energy density
- Parametrize also as function of cluster depth (Lambda)

Michele Consonni

Summary of the results

- ~1 GeV resolution improv.
 - (Mostly due to negative energy suppression)
- Flat jet and MET response as function of $N_{\mbox{\scriptsize VTX}}$
- Negative bias
 - Recoverable after jet scale calibration?

Michele Consonni

Back-up material

HCW - Lisbon - June 2009

MET with pile-up

MET from CmbTowers

Michele Consonni

CellOut after subtraction

