Gamma jet balancing

Andrea Messina

Outline

- characterization of the event sample
- balancing procedure
- Energy flow
- DPD skimming

Event Sample

group08.PerfJets.mc08.10800x.PythiaPhotonJetX.recon.DPD_NOSKIM.e344_ s456_r545_DPDMaker000157_p1 (X=1,4)

Balancing procedure

- AntiKt6; TopoCluster; EM scale
- $E_T(\gamma) > 20 \text{GeV}; |\eta_{\text{jet/}\gamma}| < 2.5; \Delta \phi_{\text{jet-}\gamma} > 2.9$
- $E_T^{Corr} = Corr(E_T^{Meas}) * E_T^{Meas}$
- Corr(E_T) = $\sum_{i=0,4} P_i / [Log(E_T)]^i$; with P_i fitted to $B(E_T)$
- $B(E_T^Y) = \langle E_T^{jet}/E_T^Y \rangle (E_T^Y) = \rangle B(E_T^{jet}) = B(E_T^Y * Corr(E_T^Y));$ (where "(x)" means function of x)
- <x> corresponds to the mean μ of gaussian fit of x in the region μ $\mp 2\sigma$ => it is important that it does not have big tails

EM Scale balance

Numerical inversion

Corrected balance

Truth balance

0.9

1224

Energy density vs R

Energy density [GeV/(unit ηφ)] as a function of the radial distance from the jet axis

It is important to measure the detail of the energy distribution around the jet axis to have the soft-physics under control

This variable can be used to check the MC description of data (systematics); and to derive a out of cone energy correction

Energy vs R & pt

Energy density vs Φ

Balance versus n

Balance E^{2nd} + / E^{1nd} + < 30%

Conclusions

- balancing using the numerical inversion method gives a linear result as a function of p_T with a spread of few %
- it is preferable a D2PD skimming procedure based on prescales. Selecting on E_T jet is biasing the results
- The event selection in $|\eta|$ and p_T of the second jet is not critical, but helps having a better control at low E_T
- the "out-of-cone"/ "underlying-event" energy is at the level of 10% @ 30 GeV and 5% @ 200 GeV (for AntiKt6HItopo), we need to be able to model it
- tower's energy distribution as a function of ΔR and $\Delta \phi$ gives a handle to correct for the soft physics

DPD skim strategy

100

E_τ [GeV]

100

E_T [GeV]

