Gamma jet balancing Andrea Messina #### Outline - characterization of the event sample - balancing procedure - Energy flow - DPD skimming ### Event Sample group08.PerfJets.mc08.10800x.PythiaPhotonJetX.recon.DPD_NOSKIM.e344_ s456_r545_DPDMaker000157_p1 (X=1,4) ## Balancing procedure - AntiKt6; TopoCluster; EM scale - $E_T(\gamma) > 20 \text{GeV}; |\eta_{\text{jet/}\gamma}| < 2.5; \Delta \phi_{\text{jet-}\gamma} > 2.9$ - $E_T^{Corr} = Corr(E_T^{Meas}) * E_T^{Meas}$ - Corr(E_T) = $\sum_{i=0,4} P_i / [Log(E_T)]^i$; with P_i fitted to $B(E_T)$ - $B(E_T^Y) = \langle E_T^{jet}/E_T^Y \rangle (E_T^Y) = \rangle B(E_T^{jet}) = B(E_T^Y * Corr(E_T^Y));$ (where "(x)" means function of x) - <x> corresponds to the mean μ of gaussian fit of x in the region μ $\mp 2\sigma$ => it is important that it does not have big tails #### EM Scale balance #### Numerical inversion #### Corrected balance #### Truth balance 0.9 1224 ## Energy density vs R Energy density [GeV/(unit ηφ)] as a function of the radial distance from the jet axis It is important to measure the detail of the energy distribution around the jet axis to have the soft-physics under control This variable can be used to check the MC description of data (systematics); and to derive a out of cone energy correction # Energy vs R & pt # Energy density vs Φ ### Balance versus n ### Balance E^{2nd} + / E^{1nd} + < 30% #### Conclusions - balancing using the numerical inversion method gives a linear result as a function of p_T with a spread of few % - it is preferable a D2PD skimming procedure based on prescales. Selecting on E_T jet is biasing the results - The event selection in $|\eta|$ and p_T of the second jet is not critical, but helps having a better control at low E_T - the "out-of-cone"/ "underlying-event" energy is at the level of 10% @ 30 GeV and 5% @ 200 GeV (for AntiKt6HItopo), we need to be able to model it - tower's energy distribution as a function of ΔR and $\Delta \phi$ gives a handle to correct for the soft physics # DPD skim strategy 100 E_τ [GeV] 100 E_T [GeV]