GEANT4 Physics Evaluation with HEC Testbeam Data

A. Kiryunin and P. Strizenec

- Beam tests of serial HEC modules in 2000-2001
- GEANT4 version 9.2 (released in December 2008)
- Different physics lists:

- QGSP-BERT

- * quark-gluon-string (QGS) model for interactions
- * pre-equilibrium decay model for the fragmentation
- *~ Bertini cascade code for modeling particle-nuclear interactions below ${\sim}10~{
 m GeV}$

– FTFP

* similar to QGSP, but with FRITIOF string model instead of QGS one

- FTFP-BERT

- *~ with Bertini cascade code for modeling particle-nuclear interactions below ${\sim}10~{
 m GeV}$
- FTF-BIC
 - * with binary cascade model for nucleon induced reactions below 3 GeV

Simulation, Reconstruction, Analysis

- Stand-alone package for simulations of the HEC testbeam
- Simulated samples:
 - energy scans with charged pions (10-200 GeV)
 - energy scans with electrons (6-147.8 GeV)
- GEANT4 range cut = 30 μ m
- Saturation of the response in liquid argon for particles with large dE/dx: usage of Birks' law

$$\Delta E' = \Delta E \frac{A}{1 + \frac{c}{\rho} \frac{\Delta E}{\Delta x}}$$

$$A = 1$$

$$c = 0.0045 \text{ g/(MeV cm^2)}$$

$$\rho = 1.396 \text{ g/cm}^3$$

• Fast readout of calorimeter signals:

detailed modelling of signal measurements (by convolution of time profiles with shaping functions)

Effectively this procedure means the integration of time profiles of shower development over a few tens of nanoseconds

- Energy reconstruction:
 - following experimental procedure
 - EM-scale calibration
 - cluster of the fix size
 - Gaussian fit: E_0 and σ
- Analysed parameters:
 - energy resolution (σ/E_0)
 - calorimeter response to charged pions, defined as a ratio of energies in pion and electron clusters (π/e)
 - shape of hadronic showers

Pion energy resolution

- **FTFP** is the closest to experimental values of the energy resolution
- FTF-BIC demonstrates the worst behaviour

Pion energy resolution: Two-term parametrization

- $\sigma/E_0 = A/\sqrt{E_{BEAM}} \oplus B$
- Experimental values: $A = 69 \pm 1 \% \sqrt{GeV}, B = 5.8 \pm 0.1 \%$
- MC predictions:

Physics	Terms of energy resolution				
list	$A[\%\sqrt{GeV}]$	B [%]			
QGSP-BERT	60.2 ± 0.7	5.48 ± 0.09			
FTFP	63.3 ± 0.8	6.61 ± 0.10			
FTFP-BERT	51.5 ± 0.7	5.76 ± 0.08			
FTF-BIC	49.5 ± 0.6	5.09 ± 0.08			

- Sampling term A of the energy resolution is better described by **FTFP**
- Physics lists with the Bertini cascade model (QGSP-BERT and FTFP-BERT) give better predictions of the constant term B

Pion response

- **FTFP** gives the best description of the pion response, *except the lowest beam energy*
- FTF-BIC and FTFP-BERT predict too high response to charged pions

Shape of hadronic showers: Fraction of energy in HEC longitudinal layers

Four HEC longitudinal layers: 8/16/8/8 LAr gaps, 1.5/2.9/3.0/2.8 λ $F = \langle E_{LAYER} \rangle / E_{SUM}$, where $E_{SUM} = \Sigma \langle E_{LAYER} \rangle$

A. Kiryunin and P. Strizenec

Shape of hadronic showers Fraction of energy in HEC longitudinal layers: Ratio to experiment

- Fraction of energy in the second (main) layer is described within a few percent by all physics lists
- **FTFP-BERT** and **FTF-BIC**: good description of shower profiles, *except the lowest beam energy*
- **FTFP**: hadronic showers start earlier and are more compact (see layers 1 and 3)

A. Kiryunin and P. Strizenec

Shape of hadronic showers: Lateral energy leakage

- Energy leakage from HEC modules:
 - virtual "leakage" detectors surrounded calorimeter modules
 - leakage energy = sum of kinetic energies of all particles stopped in "leakage" detectors
- **FTFP**: the smallest lateral leakage
- FTF-BIC: the largest lateral leakage

Summary of the Comparison of MC Predictions and Experimental Results

- Ratio between simulated and experimental data as a function of the beam energy E_{BEAM}
- Maximal and minimal values of this dependence \Rightarrow

Deviation of MC predictions from experimental results [in %]

Physics	Resol	ution ¹	Resp	onse ²	Fraction of energy in layers ²					
list					Lay	/er 1	Lay	er 2	Lay	er 3
QGSP-BERT	-15	-4	+1	+3	+1	+11	-4	0	-10	+1
FTFP	-4	+8	0	+2	+2	+11	-3	-1	-15	-3
FTFP-BERT	-20	-7	+4	+6	-4	+5	-3	+1	-4	+10
FTF-BIC	-25	-18	+6	+10	-4	+5	-3	0	-4	+6

¹Data with $E_{BEAM} \ge 30$ GeV are used: Errors of the resolution are too large at smaller beam energies.

²Data with $E_{BEAM} = 10$ GeV are not used: Studied physics lists have problems to describe those parameters at this beam energy.

Conclusions

New round of GEANT4 based simulations with version 9.2 was carried out for the HEC stand-alone testbeam. Four different physics lists, namely: QGSP-BERT, FTFP, FTFP-BERT and FTF-BIC — were used for GEANT4 simulations. Comparison with experimental results was done.

None of these physics lists can describe the whole set of studied HEC performance parameters:

- The sampling term of the energy resolution is better described by the FTFP physics list and the constant term by the BERT-based physics lists
- Pion response is well predicted by FTFP and QGSP-BERT, while FTFP-BERT and FTF-BIC predict too high response to charged pions
- FTFP-BERT and FTF-BIC give good description of longitudinal shower profiles, whereas FTFP predicts compact hadronic showers