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OUTLINE

Jet Shapes at hadron level: Underlying Event

Jet shapes at detector level:
l. Different calorimeter constituents
Il. Effects of jet calibration on shapes

lll. Pile-up and dependence on N vertices using
calorimeter constituents and tracks associated to jets

IV. Results using the Anti-Kt algorithm



INTRODUCTION

Differetial Jet Shape
itferetial Jet Shap » Observables like the shape of the jets

are sensitive to a detailed simulation

P(r)
\ | of the showers in the calorimeter

* Being a ratio of energies one can
9 R measure it precisely using first data

0 1117/  Jet Shapes are sensitive to the
N\ underlying event and to the presence
\2 of pile-up
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37 GeV < P, < 45 GeV

Differential Jet Shapes |
(Hadron Level)
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* Pythia MC di-jet samples (10 TeV) JO to
J6:8 GeV < P_hard < 1120 GeV with and

withouth Underlying Event (UE)

p (r/R)

* Jets reconstructed with the ATLASCone
and the SISCone algorithm, both with 10"
R =0.7 and SMF=0.75

=

4 ATLAS MC (10 TeV) with UE: CONE
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304 GeV < P, < 340 GeV

4  ATLAS MC (10 TeV) with UE: CONE
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- Jets are narrower as the P_ increases

* Broader jets in samples with Underlying
Event can be clearly seen at low P_ values

Comparison with CDF run Il data:
PRD 71, 112002 (2005) at hadron level (no
detector effects)
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Integrated Jet Shape |, 37 GeV < P; < 45 GeV

(Hadron Level)  0.1<|n|<0.7 ,
- . 4
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Summary Plot (Hadron Level)

@ CDF ———— [1 - ¥(0.3)] shows the activity in the outer part of the jet
it @ DATA cone
-g"./ 0_3; I ——PYTHIA Tune A
L S This activity is larger in samples with Underlying Event
o2f Y, N7 RERE (can be clearly seen in jets up to 120 GeV)
0.1<IY*I<0.7
b Despite of the different fraction of quark- and gluon-
initiated jets in ATLAS and in CDF (for example, in the
1 P_region [37, 45] GeV, 80% of gluons in ATLAS vs

73% in CDF ) SISCone matches CDF data at low P,

0.1 < |n| <0.7

ATLAS MC {10 TeV) with UE: CONE
ATLAS MC {10 TeV) with UE: SIS CONE
A &  ATLAS MC (10 TeV) without UE: CONE
CDF DATA (2 TeV)
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Jet Shapes at Detector
Level

300

250

In Pythia full simulated samples used, the /

200
Beam Spot is displaced -9 mm in Z: only

events with |Z Vix| < 4 cm are considered 150

in all studies at detector level
100

50
In each event, we choose the leading jet

(SISCone) at hadron level whit In| < 1.2and o

50 GeV < PT <70 GeV
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To perform a fair comparison, jets made with
different calorimeter constituents are required
to be matched to the Truth jet with AR < 0.1

* Shapes for Clusters similar to truth shapes

* Broader jets when made of TopoTowers,
mainly when only cells with positive energy

are use to build the towers (asymmetric)
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Effects of jet calibrations on jet shapes using f_

ftrk:(z:25
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Leading jet in each event when |n| < 1.2
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Smaller ftrk — more ° = smaller hadronic
component (ftrk < 0.3)

Higher f — less ° — larger hadronic
component (ftrk > 0.6)

Same shapes for Raw/LC Clusters -
calibrations are not distorting jets
internal structure 3



Jet shapes in events
with pile-up

Phytia MC J2 sample: 35 GeV - 70 GeV

Calorimeter jets (only leading in each
event) when 50 GeV < P. <70 GeV and

In| < 1.2

Jets get broader in the presence of pile-
up (size of the effect similar for different
constituents)

P

P

'

Symmetric Topo Towers Asymmetric Topo Towers

4
= -
- ] 1= 0
=
= a
'Y
B &
2 &
4 MO PILEUP R & MO PILEUP
E 4 PILEUP W & PILEUP
'l FEETE PEETE FEETE P P T P P T MEEEL FEETE FEETE PR PR TR FEERE Pl P T e
¥} [ %] ] K} [13] oE 0.7 (1] [ [N} [¥] LELE] (%] [:] LY [ %] 1
R R
Raw Clusters LC Clusters
L &
iy &
]
- Iy 1= o
o A
" = [ - A
= i
& ]

I &
| & MNOPILEUP - o'l * MO PILEUP &
S & PILEUP F &  PILEUP

1 L L ' 1 L L il Il [ ' L 1 L L ' 1 L L
[+§] [¥] L] 04 [ L) [ [:X:] (%] [§] [F] [ LK} [:X-] LE:] [ [aX:) [} 1
R R

= 4  NO PILEUP

i A PILEUP: Nvix < 6
. ® PILEUP: 6 = Nvtx = 10
i PILEUP: Nvix = 10

Pile-up events are expected to have
multiple vertices and a correlation between
the primary vertex multiplicity and shapes

"\ is expected:

- Jets get broader as the Nvtx
increases (demostrating sensitivity to

pile-up)

1_— 2
- 4 \
— B A 2
= | R -
— &
- LC Clusters i
1l:r‘:—
i I | I IIII I IIIIIlIIIIlIIIIIII 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

ra'. R



Jet shapes using

tracks

Calorimeter leading jet in each event when
In| <1.2and 50 GeV < P_< 70 GeV
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Tracks matched to the jet
|Z track — Z vertex| < 3.5 mm

Tracks < Pt>1GeV
selected nHits (B-layer+SCT+Pixel)>6
nHits (TRT) >0
N qual/NDofF < 3
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* Shapes calculated with tracks are
broader in the presence of pile-up

* As before, broader jets as the
primary vertex multiplicity increases
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Jet shapes using Anti-Kt
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- s AnitKt
1) NO PILE-UP: 6 o siscone
sC
Calorimeter leading jet in each event -
when [n| < 1.2and 50 GeV <P, <70 GeV § 4 . .
(SISCone and Anti-Kt with D = 0.6 jets , 8 af- . &
matched with AR < 0.1) / . o
2
Average number of constituents (LC e ©
Clusters) in the different jet annulus E
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There are almost no constituents in the
last annulus of Anti-Kt jets Looking at the average number of
- constituents one can see that jets
- . *  Antikt reconstructed with the Anti-Kt algorithm
©  SiSCone are more conical and have a radius of
1 = ¢ around 0.6
= - ® h
= [ * \The differences among the jet algorithms
i > are reflected in the shapes
R=0.7 o
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2) PILE-UP:
* When adding pile-up, the differences among the two algorithms increase

* Anti-Kt jets present a more stable geometry. This might help to implement energy corrections

N constituents p(r)

Y=

C * Anit-Kt I~ *  Anti-Kt
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CONCLUSIONS

* Sensitivity of jet shapes to Underlying Event and Pile-up has been
demonstrated

* Jet Shapes are robust against calibration (Raw and LC Cluster jets
depending onf )

* As expected, jets reconstructed with the Anti-kt algorithm are more
conical than those reconstructed with the SISCone

* ATLAS note in preparation
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