Input to jet reconstruction: towers, clusters and topo-towers

Contribution to the Lisbon Hadronic Calibration Workshop

David W. Miller

SLAC National Accelerator Laboratory and Stanford University

June 24, 2009

D.W. Miller (Stanford, SLAC)

Input to jet reconstruction: towers, clusters and topo-towers

June 24, 2009 1 / 21

Fractional resolution for jets with different inputs

Compare different inputs at various luminosities

- Jets built from topo-clusters and topo-towers show very similar stability with respect to luminosity
 - This coincides with what I showed several months ago in only a single p_T bin without numerical inversion
- Tower jets continue to show the sensitivity to higher luminosity environment that we expect without noise suppression

Jet input Angular resolution studies at 2×10^{33} cm⁻²s⁻¹

Angular resolution in events with pile-up Di-jet spectrum with $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, 25ns bunch spacing

- Angular resolution is identical between topo-cluster and topo-tower jets
- Angular resolution is degraded for standard calo-tower jets
- Both true, even at this "high" luminosity

Jet input Single event display

Single J2 event with pile-up at $2 \times 10^{33} cm^{-2} s^{-1}$

Event #179 in valid1.105011.J2_pythia_jetjet.recon.ESD.e344_s479_d140_r576

SIS-cone jets

SISCone4TopoTower

~ Completely different picture

on jet

Reconstructed jet with its constituents

Negative energy jet constituents (open circles)

Truth jet

D.W. Miller (Stanford, SLAC)

Input to jet reconstruction: towers, clusters and topo-towers

depending

input

Cluster properties: multiplicity vs. N_{PV}

- Many more clusters as the instantaneous luminosity increases, both in central region and forward region
 - Forward region more dramatic
- Large cluster splitting may be difficult to model, especially in this kind of busy environment

Cluster properties: cluster p_T vs. N_{PV}

Di-jet spectrum at various luminosities and bunch spacing

- These clusters are all **very** low *p*_T
 - Factor 1/3 the p_T of clusters in events without pileup
- Although very small, the average cluster p_T is still growing even in the central region as a function of N_{PV} .
- More particles are contributing to a single cluster

D.W. Miller (Stanford, SLAC)

Cluster properties: average longitudinal moment vs. N_{PV} Di-jet spectrum at various luminosities and bunch spacing

- Smaller clusters, whose size changes as a function of the instantaneous luminosity for all average luminosities
 - Increase of 20% between lowest and highest vertex multiplicity
- The cluster growth is clearly a larger effect in the forward region than central
- Still present, but very subtle, in central region

Cluster properties: average longitudinal moment vs. N_{PV} (hadronic clusters)

Di-jet spectrum at various luminosities and bunch spacing

- The growth of clusters is more pronounced for hadronic clusters than for all clusters combined
 - Cluster size grows by about 40% between lowest and highest vertex multiplicity
- Again, this effect seems to be confined to the forward region, including the HEC and FCAL

D.W. Miller (Stanford, SLAC)

Topo-tower & topo jets in J2 events without pile-up

D.W. Miller (Stanford, SLAC)

Topo-tower & *topo jets in J2 events at* $2 \times 10^{33} cm^{-2} s^{-1}$

D.W. Miller (Stanford, SLAC)

Conclusions

Summary and conclusions

Summary

- Topo-tower and topo-cluster energy and angular resolution are nearly identical, even in high luminosity environments
 - Noise suppression makes a very big difference
- Standard towers (i.e. no noise suppression) clearly show large sensitivities to pile-up and require the use of a non-physics "resummation" tool in order to use as jet input
- Topological cluster properties (size, shape) are affected by the presence of multiple interactions, many small, low p_T clusters appear
- Clusters in the central region are least affected by pile-up

Conclusions

- Noise suppression is essential
- When compared on the same footing, jets built from towers and clusters show similar resolution (energy and angular)
- Size and shape properties of clusters are most affected by pile-up in the forward regions, relatively flat in the central region

Additional material

D.W. Miller (Stanford, SLAC) Input to jet reconstruction: towers, clusters and topo-towers

June 24, 2009 12 / 21

Cluster properties: isolation fraction vs. N_{PV}

Di-jet spectrum at various luminosities and bunch spacing

D.W. Miller (Stanford, SLAC)

Cluster properties: cluster p_T

Cluster properties: cluster N_{cells}

Cluster properties: average N_{cells} vs E_T per cluster

Cluster properties: average second long. moment vs. N_{PV}

Cluster properties: average N_{cells} vs. N_{PV}

D.W. Miller (Stanford, SLAC)

Information related to LAr design for high luminosity

Marco Delmastro's thesis:

http://cdsweb.cern.ch/record/953119/files/thesis-2003-033.pdf

• LAr ECAL Team tutorial this summer.

http://indico.cern.ch/conferenceDisplay.py?confId=35889

- The reference for LAr
 - "Signal processing considerations for liquid ionization calorimeters in a high rate environment"
 - NIM A: Volume 338, Issues 2-3, 15 January 1994, Pages 467-497
- Comparison between the estimated noise from CaloNoiseTool and the real noise from the pileup overlay with release 12
 - ATL-LARG-PUB-2007-011
- Wiki for calorimeter digitization:

https://twiki.cern.ch/twiki/bin/view/Atlas/CaloDigitization

- Some related posts to the Pileup Hypernews Forum
 - https://hypernews.cern.ch/HyperNews/Atlas/get/pileUp/61/3/1/2/1.html
 - https://hypernews.cern.ch/HyperNews/Atlas/get/pileUp/47/1/1.html
 - https://hypernews.cern.ch/HyperNews/Atlas/get/pileUp/46/1.html