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Abstract

The response of the ATLAS barrel calorimeter to pions with momenta from 2 to
180 GeV is studied in a test-beam at the CERN H8 beam-line. The mean energy, the energy
resolution and the longitudinal and radial shower profiles are measured. In addition, various
observables characterising the shower topology in the calorimeter are measured. The data
are compared to Monte Carlo simulations based on a detailed description of the experimen-
tal set-up and on various models describing the interaction of particles with matter based on
Geant4.



Contents
1 Introduction 4

2 Experimental Set-up 5
2.1 Beam-line Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Beam Momentum Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Beam-line Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 The Inner Detector System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 The LAr Barrel Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 The Tile Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Combined Detector Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Reconstruction of the Energy Measured in the Calorimeter 10
3.1 Cell Energy Reconstruction of the LAr Calorimeter . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Pedestal Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Electronic Calibration System . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Signal Amplitude Reconstruction with Optimal Filtering . . . . . . . . . . . . . 11
3.1.4 Absolute Electromagnetic Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Cell Energy Reconstruction of the Tile Calorimeter . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Signal Amplitude Reconstruction from the Samples . . . . . . . . . . . . . . . . 12
3.2.2 Electronic Calibration with the Charge Injection System . . . . . . . . . . . . . 13
3.2.3 Cell Equalisation with a Caesium Source . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Absolute Electromagnetic Scale . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Topological Cluster Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Data-Set 18

5 Monte Carlo Simulation Tools 20
5.1 Modelling of Particle Interactions with the Detector Material . . . . . . . . . . . . . . . 20
5.2 Modelling of the Detector Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 The LAr Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 The Tile Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.3 Calorimeter Noise Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.4 Treatment of the Time Structure of Hadron Showers . . . . . . . . . . . . . . . 26
5.2.5 Simulation of the Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.6 Simulation of the Combined Set-up . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.7 Simulated Data-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Event Selection 29

7 Particle Identification 32
7.1 Electron and Pion Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Proton Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Muon Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3.1 Overlayed Muons from the High Energy Beam-Line . . . . . . . . . . . . . . . 38
7.3.2 Muons from Pion Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



8 Pion Energy Reconstruction 43
8.1 Response in a Fixed Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Energy Reconstruction with the Topological Clustering . . . . . . . . . . . . . . . . . . 46

8.2.1 Response and Resolution Dependence on Topological Clustering Parameters . . 46
8.2.2 Leading Topological Cluster Fraction . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.3 Dependence of the Zero Signal Probability on the Parameters of the Topological

Cluster Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.4 Topological Cluster Performance on Noise . . . . . . . . . . . . . . . . . . . . 51
8.2.5 Conclusion on Topological Cluster Thresholds . . . . . . . . . . . . . . . . . . 51

9 Mean Energy Response and Energy Resolution 53
9.1 Combined Response and Resolution of the LAr and the Tile Calorimeter . . . . . . . . . 53

9.1.1 Combined Total Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.2 Combined Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1.3 Combined Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.1.4 Energy Distribution in the LAr Calorimeter . . . . . . . . . . . . . . . . . . . . 56
9.1.5 Energy Distribution in the Tile Calorimeter . . . . . . . . . . . . . . . . . . . . 56
9.1.6 Mean Energy Fraction in the Electromagnetic Calorimeter . . . . . . . . . . . . 59

9.2 Tile Calorimeter Response Requiring Minimally Ionising Particles in LAr . . . . . . . . 60
9.2.1 Energy Distribution in TileCal . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2.2 Response in TileCal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.2.3 Resolution in TileCal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10 Energy Measurement Uncertainties 63

11 Longitudinal Shower Profiles 64
11.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11.2 Comparisons of Data and Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . 64

12 Lateral Shower Profile 68
12.1 Mean Lateral Shower Profile per Calorimeter Compartment . . . . . . . . . . . . . . . . 68

12.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12.1.2 Dependence on the Shower Depth . . . . . . . . . . . . . . . . . . . . . . . . . 68
12.1.3 Dependence on the Pion Momentum . . . . . . . . . . . . . . . . . . . . . . . . 68
12.1.4 Comparison of Data and Monte Carlo Simulations . . . . . . . . . . . . . . . . 70

12.2 Energy Fraction in a Narrow Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

13 Topological Cluster Moments 74
13.1 Definition of Cluster Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.2 Data Monte Carlo Comparisons of Topological Cluster Moments . . . . . . . . . . . . . 77

13.2.1 Cell Energy Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.2.2 Longitudinal Shower Depth and Length . . . . . . . . . . . . . . . . . . . . . . 78
13.2.3 Lateral Shower Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
13.2.4 Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

14 Simulation Results from Fine Momentum Scan 83

15 Summary of the Monte Carlo to Data Comparisons 85

16 Conclusion 86

3



1 Introduction
The Large Hadron Collider (LHC) presently commissioned at CERN collides protons having an energy
of 7 TeV. The resulting high centre-of-mass energy opens a new chapter for particle physics exploring
the high-energy frontier.

Calorimeters measure the energy of charged and neutral particles subject to strong or electromagnetic
interactions. One of their main tasks is to measure the energy and directions of jets, sprays of hadrons of
various species that emerge from the hard parton-parton scattering. Additionally, their hermeticity allows
the reconstruction of the missing transverse energy. The understanding of the calorimeter response to
hadrons and of their shower development is therefore important for the LHC physics program.

ATLAS is one of the multi-purpose detectors at the LHC measuring particles produced in proton-
proton collisions. The inner detector tracking system (ID) measures the angles, the momentum and the
life-time of charged particles. In the central detector part (barrel), the calorimeter system consists of an
electromagnetic sampling calorimeter, using liquid argon as active medium and lead as absorber, and a
hadronic sampling calorimeter, using plastic scintillator as active medium and iron as absorber.

In the year 2004 a full slice of the ATLAS barrel detector was exposed to particles produced in a
test-beam at the CERN H8 beam-line. In this “combined test-beam” (CTB) modules of all sub-detectors
(tracking system, electromagnetic and hadronic calorimeter and muon chambers) were arranged in a
similar way as they were installed in the ATLAS barrel detector. The read-out electronics and the data
acquisition system were close to those presently used in ATLAS. A data taking period is analysed where
all sub-detectors have been operational. The inner detector system is used to select single pion tracks and
provides particle identification. The electromagnetic and hadronic calorimeter are used to measure the
pion response and the shower topology. The available beam momentum range of this data taking period
was 2 to 180 GeV.

For the first time1), the combined ATLAS barrel calorimeter system was exposed to pions of 2 to
9 GeV. Studying the calorimeter response of pions at such low momenta is important, since the hadrons
constituting jets can have rather low momenta even at the high energies available at the LHC. For in-
stance, on average 30% of the momentum of a jet with a momentum of 100 GeV is carried by hadrons
with momenta below 10 GeV. The response and resolution of pions using various energy reconstruction
methods (dependence on noise cuts, shower containment and cluster algorithms) are studied. Further-
more, the longitudinal and lateral shower extension is measured.

The data are compared to Monte Carlo (MC) simulations based on the Geant4 simulation framework.
Various ways to combine models to simulate the interaction of particles depending on the particle type
and the particle energy are tested. The aim is to identify the best combination of models and in parallel to
asses the quality of the detector response simulation. For the ATLAS barrel electromagnetic calorimeter
it is the first time that the pion response is systematically compared to MC simulations.

The paper is organised as follows:
The experimental set-up including the beam-line, the beam detectors and the ATLAS detector is

described in section 2. The reconstruction of the energy in the calorimeters is summarised section 3.
This includes the cell energy reconstruction and the definition of the pion signal. The basic ingredients
of the Monte Carlo simulations are described in section 5. The data-set is described in section 4, the event
selection is given in section 6 and the particle identification is discussed in section 7. Various methods to
define the pion energy depositions are studied in section 8. This includes a simple cone around the beam
axis as well as the topological cluster algorithm used in the standard ATLAS reconstruction. The results
on the mean energy response and the energy resolution are presented in section 9 and the uncertainties
on the energy measurement are discussed in section 10. The longitudinal shower profiles are measured
in section 11 and the lateral shower profiles in section 12. Details of the shower topology are further

1)Earlier tests using proto-type modules have been restricted to higher pion momenta [1].
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examined in section 13. All measurements are compared to Monte Carlo simulations. In section 14
some conclusions on the accuracy of the simulation are drawn based on a fine momentum scan.

2 Experimental Set-up
The beam passes through a system of detectors that monitor the beam position and identifies the beam
particle type. It then reaches the inner detector system and finally the calorimeter system consisting of
an electromagnetic (LAr) and a hadronic (TileCal) part. Behind the calorimeter, beam monitor detectors
for muon identification were installed. The muon spectrometer installed at the end of the beam-line is
not used in this analysis.

A right-handed reference frame is defined that is close to the ATLAS reference frame. The x-axis
points along the beam-line, while the y-axis points vertically upward. The η-and φ -directions are chosen
with respect to a reference frame with cylindrical coordinates. Its origin mimics the virtual proton-proton
interaction point in ATLAS. In this coordinate system the z-axis is defined along the LHC beam axis. The
φ and θ angles are the azimuthal and polar angles. The pseudo-rapidity is defined by η = − log tan θ/2.

The set-up of the combined test-beam is described in detail in ref. [2]. A description of the main
parts relevant for this analysis is given in the following.

2.1 Beam-line Set-up
The CTB set-up was installed on the H8 beam line at the SPS accelerator of CERN. The primary proton
beam with a momentum of 450 GeV impinges on a beryllium primary target (T4) that is up to 30 cm
thick. In the target various secondary particles such as protons, pions, electrons and kaons are produced.
The secondary beam is selected using a system of magnets and collimators for electrons and hadrons
with momenta between 10 and 400 GeV. Electrons can be to a large extent separated from the hadronic
beam component through synchrotron radiation using a system of deflecting magnets and collimators. A
sketch of the beam-line is shown in Fig. 1.

Particles with momenta greater than 10 GeV move along the straight line and are produced upstream.
This beam-line is called high energy (HE) beam-line in the following. The momentum (p) spread of the
HE beam-line is estimated to be ∆p/p = 1%.

To produce particles at lower momenta (< 10 GeV), a 80 GeV secondary pion beam is directed on a
1 m long secondary polyethylene target that is installed 45 m before the experimental set-up. An absorber
is placed after the target to stop particles that would reach the detector system via the HE beam-line.

The particles are focused and deflected to the very low energy (VLE) beam-line where the momentum
selection is done using four dipole magnets and collimators. These tertiary beam particles are then sent
back to the HE beam-line where they are directed to the experimental set-up. The VLE beam-line can
deliver particles with momenta ranging from 2 to 9 GeV with a momentum spread of ∆p/p = 3%. Most
of the produced particles are electrons.

2.2 Beam Momentum Determination
The beam momenta are calculated from the magnet currents and the beam-line collimator settings. This
method relies on work done for the LAr calorimeter in the 2002 test-beam analysis [3], where a system
of Hall probes was used to precisely determine the magnetic field in the bending magnets.

Based on this Hall probe measurement the relation between the measured magnet currents and the
magnetic field in the bending magnets is known. The precision of the knowledge of the beam momenta
is about 0.3%.
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Figure 1: Sketch of the HE (straight part) and VLE (part bent downwards) H8 beam-line at the
SPS and of the beam monitor detectors. The particle beam enters from the left. The triangles
mark the dipole positions to deflect the particles into the VLE beam-line and to redirect them after
momentum selection back to the HE beam-line.

For the runs at 20, 50 and 100 GeV the magnet currents have not been recorded and the beam mo-
menta of runs that are nearby in time have been used. However, typical variations of the beam momentum
when changing the beam-line settings and then restoring them to the previous values is 0.7%. The preci-
sion of this procedure can be cross-checked by measuring electrons.

Additionally, for the VLE beam-line, beam momenta were measured using the deflection angle of
the beam chamber in the VLE beam line (BC–2) event by event [4, 5]. An overall normalisation factor
between the HE and the VLE beam line of 0.975 has been introduced [4, 5].

The measured beam momenta are given in Table 4. The uncertainty is is about 0.7%. The beam
spread in the VLE set-up is about 3%, while it is 0.24% for the HE set-up.

2.3 Beam-line Detectors
The beam-line is instrumented with a set of detectors to monitor the beam and to trigger the data acqui-
sition system: scintillator trigger counters (S1-S3), wire chambers (BC1 - BC2) measuring the position
of the beam particles in both transverse directions and a Cherenkov counter for particle identification.
Their position is also shown in Fig. 1.

The beam monitor detectors are described in the following:

• Cherenkov counter:
A 1 m long threshold Cherenkov counter filled with helium gas in the VLE beam-line separates
pions from electrons. The Cherenkov counter in the HE beam-line (CHRV2,HE) was not opera-
tional.

• Beam wire chambers:
Delay multi-wire chambers equipped with two orthogonal wire planes measure the position of the
beam particles transverse to the beam-line (beam profile).
The spacial resolution of the wire chambers is 200 µm. The chamber BC–2 is placed on the VLE
beam-line just after the dipoles selecting the momentum and the Cherenkov counter. The chambers
BC–1 and BC0 are placed after the VLE beam-line jointly with the HE beam-line and before the
focusing quadrupole magnets.
In this analysis only BC–2, BC–1 and BC0 are used.

• Trigger scintillators:
Various scintillators are used to trigger events and to select single particles. The scintillator S1,
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installed after the quadrupole magnets, has a size of 10 × 10 × 0.6 cm3, the scintillators S2 and
S3 have a size of 5 × 5 × 1 cm3.

• Muon scintillator:
The muon veto (SMV) is a scintillator that is installed to tag and to veto unwanted muons from
the HE beam-line during data taking with the VLE beam-line. This counter was, however, not
operational. The muon halo (SMH) is a scintillator with a small hole with a diameter of 3.4 cm in
the middle where the beam can pass through, but particles in the beam halo are tagged. It has a
dimension of 40 × 40 × 2 cm3. Behind the first beam dump the muon tag, µtag, (SMT) is installed
to trigger or tag particles, like muons, that can penetrate all previous detectors and the beam dump.
It has a size of 30 × 32 × 1.5 cm3.

2.4 The Inner Detector System
The inner detector system consists of a pixel (Pixel), a silicon strip detector (SCT) and a straw tube
tracker (TRT) [6].

A Pixel module consists of a single silicon wafer with an array of 40 × 400 µm2 pixels. The pixel
detector is made of six modules organised in three compartments and two sectors. The distance along
the beam axis between the compartments and the location of the modules mimic the arrangement of the
modules in ATLAS. Each module has an active size of z × y = 60.8 × 16.4 mm2 and is positioned at
an angle of about 20o with respect to the incident beam. Modules in the same compartment overlap
by 200 µm. The overall active area covered corresponds to a box with side sizes of 175 mm (in the
x-direction), 250 mm (in the y-direction) and 180 mm (in the z-direction).

A SCT module is built from four single-sided silicon micro-strip sensors glued back-to-back in pairs
of 40 mrad stereo angle, for a space point reconstruction in three dimensions. Each module produces
two hits, one in each direction. The modules correspond to the ones used in the ATLAS end-cap. They
have variable pitch size. The SCT consists of four compartments with two modules per compartment
covering an area of z × y = 120.8 × 60 mm2. There was a 4 mm overlap between the modules in each
compartment. The two middle modules are centred vertically with respect to the beam axis, the first and
the last ones are off-set by y = −5 mm and y = 5 mm. The overall active area covered corresponds to
a box with side sizes of 330 mm (in the x-direction), 300 mm (in the y-direction) and 200 mm (in the
z-direction).

The TRT consists of straw drift tubes filled with an active gas interleaved with transition radiators.
Two ATLAS barrel wedges (each with three modules) are used. Each wedge is equivalent to 1/32 of
the circumference of a cylinder with inner radius of 1080 mm and an overall length (along the z-axis) of
1425.5 mm. The angular coverage is ∆φ = 28.125◦ starting at φ = −17.365◦ .

In addition to tracking information, the TRT provides information on the amplitude of the measured
signal in a straw encoded in two different thresholds. When the low threshold is passed, a hit in the
straw is indicated. When in addition the higher threshold is passed, it is likely that a transition radiation
(TR)photon interacted with the gas. Such TR photons are emitted by particles with a very high Lorentz
gamma–factor (γ > 1000), thus essentially only electrons. This feature allows for a good separation of
electrons and pions.

2.5 The LAr Barrel Calorimeter
The details of the ATLAS LAr barrel calorimeter are described elsewhere [6–8]. In the CTB one
LAr module was installed. A module is made out of accordion-shaped lead absorbers glued between
two 0.2 mm thick stainless steel sheets placed into a cryostat containing liquid argon. The read-out elec-
trodes are interleaved between two absorbers. The lead of the absorbers have a thickness of 2.21 mm
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LAr TileCal
PS Front Middle Back A, BC D

∆η 0.025 0.003 0.025 0.05 0.1 0.2
∆φ 0.1 0.1 0.025 0.025 0.1 0.1

Table 1: Cell segmentation of the presampler and the three LAr and TileCal compartments in the
η × φ plane.

and the electrode size is 0.275 mm. A high voltage of 2kV is applied between the absorbers and the
electrodes.

The module is longitudinally segmented into three compartments, each having a different transverse
segmentation. The cell granularity of the three LAr calorimeter compartments is given in Table 1.

At η = 0.45, the front, middle and back compartments have thicknesses of 0.32 λ , 0.962 λ and
0.074 λ , respectively2) .

A thin presampler detector (PS) is mounted in front of the accordion module. It consists of two
straight sectors with cathode and anode electrodes glued between plates made of a fibre-glass epoxy
composite (FR4). The electrodes are 13 mm long. The gap between the electrodes is 1.93 mm.

2.6 The Tile Calorimeter
The details of the ATLAS TileCal are described elsewhere [9].

The iron-scintillator media of the TileCal modules is made of 4 and 5 mm thick iron plates sand-
wiched by 3 mm thick scintillator tiles, with a periodicity of 18 mm. The total thickness of the iron and
the scintillator in a period is 14 mm and 3 mm, respectively. The tiles are oriented perpendicularly to
the module length, i.e. they are placed parallel to the direction of the impinging particles. Each side
of the scintillating tiles is read out by a single wavelength-shifting (WLS) fibre. The fibres are grouped
together, separately for each side, forming a cell, that is read-out by two photo-multipliers (PMT). The
fibres are joined in bundles such that projective towers pointing to the ATLAS interaction region are
formed.

Each TileCal module represents one azimuthal segment of in total 64 modules used for the complete
barrel and extended barrel assembly of the TileCal in ATLAS (see for details ref. [10]). The TileCal has
a granularity of ∆η = 0.1 and ∆φ = 0.1. Only the last compartment has a higher η granularity (see
Table 1). Eleven tile sizes are used in the structure of the barrel modules, grouped into clusters of
3 + 6 + 2 tiles, defining three longitudinal compartments A (front), BC (middle) and D (back) with depths
of 1.5, 4.1 and 1.9 λ at η = 0, respectively.

2.7 Combined Detector Set-up
A sketch of the lay-out of the ATLAS sub-detectors installed in the combined test-beam and additional
beam monitor detectors in the beam-line is shown in Fig. 2.

The beam particles enter first the inner detector system (ID) composed of three compartments of six
pixel modules (Pixel) and four compartments of two silicon tracker modules (SCT) and of two wedges
of the barrel TRT. The Pixel detector and the SCT are surrounded by a magnet that is able to provide a
magnetic field of 2 Tesla3). The TRT detector is placed outside the magnetic field. The distance between
the last SCT compartment and the first TRT plane is 1114 cm.

2)The variable λ denotes the nuclear interaction length for protons.
3)For the data-set analysed here the magnetic field was switched off.
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Figure 2: Sketch of the ATLAS sub-detectors and additional beam monitor detectors in the H8
beam-line. The particle beam enters from the left.

After the inner detector one LAr module housed in a cryostat filled with liquid argon is placed on a
movable table together with three TileCal barrel and three extended barrel modules stacked together4) .
The distance between the two calorimeters is approximately 30 cm. This is about 5 cm longer that it is
in the ATLAS detector.

The movable table allows to change the angle and the position of the modules relative to the incident
beam to emulate particles impinging on different impact points in η at φ = 0. The particles impinge
projectively (in η) as they were coming from the ATLAS interaction point.

The cryostat housing the LAr calorimeter consists of an inner and an outer aluminium wall with
thicknesses of 4.1 cm and 3.9 cm, respectively. The two walls are separated by a vacuum gap. Between
the cryostat and the calorimeter module a foam block (ROHACELL) is installed to exclude LAr in front
of the calorimeter.

The LAr module covers a range of 0 < η < 1.4 and −0.2 < φ < 0.2 rad. The three TileCal modules
cover a range of −0.15 < φ < 0.15 rad and −1 < η < 1.

For a beam impinging at a pseudo-rapidity η = 0.45 the amount of material in front of the LAr, for
the LAr and TileCal calorimeters and of the dead material in between the two calorimeters is given in
Table 2. The length of the calorimeter layer is given in Table 2.

After the calorimeter system several test-station of the ATLAS muon spectrometer (MDT) have been
installed, but have not been used in this analysis.

4)After the test-beam data taking the LAr module and the lowest TileCal module remained in the test-beam area, the two
upper TileCal modules have been integrated in the ATLAS detector.
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LAr TileCal
start of layer 1 2 3 DM A BC D DM

λ 0.44 0.76 1.72 1.79 2.42 4.03 8.56 10.6
DM LAr DM TileCal

λ 0.44 1.35 0.63 8.18

Table 2: Top: Amount of dead material (DM) in front of the LAr calorimeter, the length of the
LAr and the TileCal calorimeters and the amount of dead material between the two calorimeters.
Bottom: Longitudinal segmentation of the amount of material in the detector system. Quoted is
the cumulative amount of material at the start of each calorimeter layer or the dead material (DM).
The numbers are given in units of nuclear interaction lengths and corresponds to the material a
particle, that impinges at η = 0.45, passes.

3 Reconstruction of the Energy Measured in the Calorimeter
The energy for each calorimeter cell is reconstructed from digitised samples of the signal from each
read-out channel. The measured signal is calibrated such that the reconstructed energy corresponds
to the deposited energy at the electromagnetic scale (measured in MeV). The electromagnetic scale is
defined to reconstruct correctly the energy deposited by electrons and photons in the calorimeter.

3.1 Cell Energy Reconstruction of the LAr Calorimeter
The electronic calibration of the LAr calorimeter in the CTB is described in detail in ref. [11].

The ionisation signal from the calorimeter is brought via cables in the LAr out of the cryostat to the
front-end crates. These crates, directly located on the cryostat, house both the Front End Boards (FEB)
to read out the ionisation signals and the calibration boards to inject a well-known calibration pulses of
known amplitude on the detector, to be used to measure the cell signal response and the electronic gains.

On the FEB, the signal is first amplified by a current-sensitive preamplifier. In order to accommodate
the large dynamic range and to optimise the total noise (electronics and pile-up), the signal is shaped
to a bipolar form and split in three linear gain ratios, called low, medium and high gain. For a given
channel the signals are sampled at the 40 MHz clock frequency by a 12-bit ADC and stored in an analog
pipeline (Switched Capacitor Array) until the trigger decision. After a trigger, a predefined number (N)
of samples (Si) is digitised.

To equalise the response dispersion of the electronics read-out and the different capacitances of each
calorimeter cell, the calibration board provides to all channels an exponential signal that mimics the
calorimeter ionisation signal and probes the electrical properties of each cell.

The cell energy is reconstructed from the digitised samples of the ionisation signal using:

E rec
cell = FµA→ MeV ·FDAQ→µA · 1

Mphys
Mcali

· ∑
i=1,2

Ri

[
N

∑
j=1

OFC j (S j −P)

]i

. (1)

The individual terms are explained in the following:

3.1.1 Pedestal Measurement

The pedestal level, P, can be determined from dedicated calibration runs with no beam or using random
triggers during the data taking of physics events. The latter method is used to correct for the observed drift
of the pedestal level during the run (few MeV) due to a varying temperature of the front-end electronics.
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3.1.2 Electronic Calibration System

The factor Ri relates the signal amplitude (in ADC-counts) to the corresponding injected current (in
DAC-counts). It is obtained by calibration runs where the injected current is changed in small steps
(“ramp run”). A higher order polynomial to relate the reconstructed amplitude and the injected charge is
used.

The factor FDAQ→µA relates the setting of the electronic calibration system to the current injected
to the electronics. It is given by FDAQ→µA = 76.3 µV/Rinj, where Rinj is the resistance of the injection
resistors (about 1 MΩ) depending on the resistor. Since the injection resistors were at slightly different
values than the ones used in the reconstruction program, a correction factor 0.9907 is applied to all cell
energies in the first compartment (strips).

3.1.3 Signal Amplitude Reconstruction with Optimal Filtering

The amplitude (A) of the sampled signal (measured in the ADC-counts) is reconstructed using a digital
filtering technique [12], where the peak amplitude is expanded in a linear weighted sum of coefficients
(OFC) and the pedestal (P) is subtracted in each sample. The optimal filtering (OF) technique recon-
structs the energy and the interaction time from the 5 measured samples S i and provides a measure of the
quality of the measured to the expected pulse-shape.

To determine the OFCs the physics pulse-shape, its derivative and the auto-correlation noise matrix
between the various samples needs to be known for each cell. In the CTB a calibration method is
used where the calibration parameters are derived from the injected calibration pulse and applied on the
physics pulse [11,13,14]. The factor Mphys/Mcali takes into account that the physics and calibration pulse
differ slightly in shape, and are not generated exactly in the same place on the detector.

In ATLAS, detector pulses have a constant timing with respect to the LHC bunch crossing frequency
(25 ns) and therefore for each cell only one OFC set is needed. However, in the test-beam particle
arrive asynchronously with respect to the data acquisition clock (DAQ) that is 25 ns long. To take the
dependence of the physics pulse on the particle arrival time with respect to the DAQ clock into account,
25 OFC sets (one for each bin of 1 ns) are used for energy reconstruction. The correct set is chosen
according to the particle arrival time measured by the beam-line TDC [11]. There is also a separate set
for each of the two read-out gains5).

3.1.4 Absolute Electromagnetic Scale

The ionisation current is converted to an energy deposited in the liquid argon gap using 1/FµA→ MeV =
fI/E · fsampl, where fI/E is the current to energy conversion taking effects of the electrical field into account
and fsampl is the sampling fraction for electrons correcting for the energy deposited in the lead absorber
that has been derived from the test-beam analysis of 2002 [3]. It depends on the LAr temperature in the
cryostat. In 2004 this temperature was precisely known, however in 2002 no precise measurement has
been done and the energy scale has been derived by comparison to Monte Carlo simulations. Therefore
an energy scale factor for all LAr cells has to be applied to take the different liquid argon temperatures
into account. It is empirically determined using electrons with an energy of 180 GeV. In this analysis a
overall factor of 1.038 is used. The systematic uncertainty on the absolute electromagnetic scale in the
CTB is about 0.8% for the VLE data-set and 0.7% for the HE data-set.

5)At the energies reachable at the test-beam only high and medium gains are used. In ATLAS a third gain (low gain) is used.
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3.2 Cell Energy Reconstruction of the Tile Calorimeter
The electronics calibration of the TileCal for the data taking period analysed here is in detail described
in ref. [15]. A sketch of the signal chain in the TileCal and the electronic read-out and the calibration
system is shown in Fig. 3.

During the CTB two electronic calibrations systems have been operational. The charge injection
system (CIS) calibrates the response of the read-out electronics and a radioactive caesium source (Cs) is
used to measure the quality of the optical response and to equalise the cell response. The laser calibration
system was not used in the CTB.

The scintillating light produced in the tiles is transported via wavelength shifting fibres into photo-
multipliers (PMT). The PMTs amplify the signal and convert the optical signal into an electrical
one. Each PMT channel has two analogue paths: the high and the low gain with 82 counts/pC and
1.3 counts/pC. The read-out electronics shapes, amplifies and digitises the signals from the PMTs. The
shaped signals are sampled every 25 ns by a 10-bit ADC.

The cell energy is reconstructed as the average over the two channels each read-out by one PMT. The
measured channel energy is reconstructed by:

E rec
chan = FpC→ MeV ·FADC→pC ·FCs · (Afit −Pfit) , (2)

where Afit and Pfit are the peak height and the baseline of the samples measured as a function of time t
(see section 3.2.1), the factor FpC→ADC is the electronic calibration factor (see section 3.2.2), FCs corrects
for cell non-uniformities using the caesium runs (see section 3.2.3) and FpC→ MeV converts the measured
charge to the absolute electromagnetic scale (see section 3.2.4).

Calorimeter

Cs sourceParticles

PMT

LASER

electronics
Monitor system

electronics
Physics events

CiS

current integrating read−out

Figure 3: Sketch of the TileCal read-out chain and the calibration scheme.

3.2.1 Signal Amplitude Reconstruction from the Samples

The amplitude Afit, the baseline (pedestal) Pfit and the time6) τfit, when the energy was deposited, is
extracted by adjusting a parameterised pulse-shape g(t) to the samples (S) (in ADC–counts) measured
as a function of time t:

S(t) = Afit g(t − τfit)+Pfit. (3)

The reconstructed energy is given by the difference of the peak height Afit and the pedestal Pfit.
The pulse-shape is extracted using signals from pions depositing about 100 GeV in TileCal cells

taking advantage of the asynchronous particle arrival time with respect to the DAQ clock. For each gain
one pulse-shape is used.

Channel-to-channel variations of the pulse-shape are mainly observed in the few last signal samples
(late sampling times). To reduce these variations only the first five samples are used in the fit. However,

6)In case of a very small signal the time is fixed and only two parameters are fit.
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the pulse-shape slightly depends on the amount of the deposited energy and this can result in a misrecon-
struction of the peak amplitude by up to 1%. Since this effect is similar for the physics and the calibration
pulse, the energy dependence of the physics pulse-shape is taken into account by the CIS calibration.

3.2.2 Electronic Calibration with the Charge Injection System

The electronics can be calibrated using a known charge injected after the PMT. More details on the
charge injection system (CIS) can be found in ref. [16].

Each channel is calibrated using calibration capacitors7) that provide a well defined charge at the
input of the read-out electronics. For a given input charge the signal amplitude is reconstructed using a
dedicated pulse-shape corresponding to the calibration pulse8), and taking into account a leakage pulse
caused by the discharging mechanism.

In dedicated calibration runs the full range of charges is scanned and the relation between the injected
charge and the reconstructed amplitude is determined. The maximal deviation of the ratio of the peak
amplitude to the injected charge is about 2% in the low region of the low gain (around 110 pC). Using
a simulation of the read-out electronics complemented with test bench measurements it was possible to
show that this non-linearity is due to a cross-talk between the saturated high gain and the low gain branch
of the read-out electronics.

The gain correction proceeds in two steps: First, a linear calibration factor is derived for each channel
and for each gain and then the residual non-linearity (in the range from 10 to 500 pC) is corrected by a
look-up table representing the average residual (over all channels).

In most regions the total uncertainty on the charge measurement on a single channel is at the level
of about 1%. At low signals in low and high gain the main uncertainty is due to the resolution of
the ADC and can reach a few percent for charges lower than 1 pC (high gain) and between 10 and
30 pC (low gain). The uncertainty of an energy measurement involving several cells is smaller than 1%
over the whole covered energy range. Details of the electronic calibration and the associated systematic
uncertainties can be found in ref. [16].

3.2.3 Cell Equalisation with a Caesium Source

The Caesium calibration system [17, 18] monitors the quality of the optical response of each Tile
calorimeter cell. It is used to adjust the PMT high voltage to equalise the response of all cells to a
0.5% level. The analysis of the calibration data also allows the derivation of additional cell corrections
that can be applied off-line.

Differences in the cell response due to variations of the scintillator material, the optical fibres or
connectors are equalised using special calibration runs where a Cs-137 γ–source that is moved by a
hydraulic system orthogonally to the tile planes through a hole in the scintillating tiles, and passes every
single scintillating tile and absorber plate. At the same time the current of each PMT is measured with
integrating electronics9) .

The signal of each individual tile is determined assuming an energy sharing modeled by a function
with a Gaussian core and an exponential tail, and by taking into account that part of the Cs-signal is

7)The capacitances are chosen to be 5.2±2% pF and 100±1% pF.
8)Since the calibration pulse is slightly faster that the one produced by a charged particle in the detector, the resulting form

of the injected pulse is similar. However, the amplitude of the calibration pulse is 10% larger and the full width half maximum
is 10% smaller than the one from the physics pulse.

9)The Cs calibration system uses a different read-out than the standard one. This is reason why the Cs-system can not provide
an absolute energy calibration, but only gives the relative cell-to-cell calibration.
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TileCal compartment A BC D
Longitudinal weight 1.00 0.977±0.002 0.919±0.006

Table 3: Longitudinal weights applied to the TileCal compartments to correct for varying cell
lengths not taken into account in the cell inter-calibration procedure. The energy calibration of the
first TileCal compartment (A) is not changed.

measured in the neighbouring tiles10) and that at the cell edges part of the signal is lost (”amplitude
method”).

The single tile response can be reconstructed with a precision of 2%, the average cell amplitude with
a precision of 0.3%. In the CTB, the stability of the cell response during a period of four months was
about 1% [15]. From the response of each cell to the Cs-signal the cell correction factor FCs given by
the response of a given cell with respect to the average of all cells in the modules can be determined and
applied off-line ehen reconstructing the cell energy.

3.2.4 Absolute Electromagnetic Scale

The response of about 10% of the TileCal modules installed in the ATLAS detector has been studied us-
ing electron test-beams in 2002 and 2003 [19]. The average response to high-energy electrons impinging
at a polar angle of 20o on the TileCal measures the calibration factor FpC→ MeV = 1.05±0.003 pC/GeV.
and defines the “electromagnetic scale”11) .

The cell-to-cell variation, including the long-range variations between modules is 2.4± 0.1%. The
dominant part of the residual cell non-uniformity of about 2% for electrons is due to differences in the
optical properties of the tiles and of the read-out fibres (intra-cell) 12).

Since the electron beam can only be used to calibrate the edge cells of the TileCal , a cell inter-
calibration procedure based on the Cs-system is needed to equalisise the BC and D cells with respect to
the A cells.

However, the cell inter-calibration can not be based on the Cs-signal alone, but also needs to take
geometrical effects into account. Since the cell length increases along the direction parallel to the nominal
particle impact direction, the distances between the Cs-holes get longer towards the end of TileCal and
therefore, due to light attenuation in the tiles, the Cs-signal is more and more decreased. This effect
can be measured using muons that impact the TileCal from the side and only travel in one tile row by
comparing muons impacting different tiles [19]. The need for such a correction has also been shown
on a test bench using a Strontium source scanned along the tiles [20]. The average measured correction
for the three longitudinal compartments is given in Table 3. The correction factors are applied to each
TileCal cell.

In the 2002 and 2003 test-beams the response variation for pions with a beam momentum of
180 GeV has been determined to be 1.5%.

10)The calibrated tile is the one closest to the source at a given moment. Typically 80% of the energy is measured in this tile
and 20% in the neighbouring ones.

11)Due to the varying size of the tiles and the iron absorber as a function of the particle impact point, the electrons response
varies by about 5% between small angles η = 0 and large angle η = 0.65 [19].

12)Such differences can be determined by the Cs-calibration system, but not corrected for, since the smallest read-out entity
is a cell and the particle impact on the cell is not known a-priori.
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3.3 Topological Cluster Algorithm
Clusters group together nearby energy deposits that are likely to be caused by the same impinging parti-
cle. They are an efficient way to describe the topology of the energy flow in the calorimeter. Clusters are
derived from calorimeter cells by adding the energy in neighbouring cells with a dynamical topological
cluster algorithm. Such an object is called “topological cluster”. The properties of clusters can be used
for particle identification and energy calibration.

The algorithm starts with a seed cell, the cell with the highest (absolute) energy not yet included in
a previously found topological cluster. All the cells in the neighbourhood of the cluster are included, if
they have an (absolute) energy larger than a predefined threshold (neighbour threshold). The procedure
is repeated until no cells in the neighbourhood of the cluster above the noise threshold are found. As a
last step all cells surrounding the cluster, if they pass another predefined threshold (perimeter threshold),
are also assigned to the cluster.

In the default configuration seed cells are required to have an energy larger than 4 standard devi-
ation (σ ) of the expected noise, neighbouring cells 2σ and all perimeter cells are included (0σ ). The
cut is applied on the absolute cell energy measured on the electromagnetic scale such that the energy
measurement is not biased by the noise contribution13) .

The reconstructed energy of the clusters is obtained as the sum over the energies of all cells assigned
to the cluster.

As an example, the cell energy distribution in the η-φ plane of a 50 GeV simulated pion for each
calorimeter compartment is shown in Fig. 4 and Fig. 5. The figure nicely illustrates the changing granu-
larity of the ATLAS calorimeter. Each cell that is surrounded by a black box is included in the topological
cluster with the highest energy. The colour of the box indicates the deposited energy in the cell. For this
particular event almost all cells with sizable energy depositions are contained in the cluster.

A detailed description of the topological cluster algorithm can be found in ref. [21].

13)In this way negative and positive noise cancels and the sum over all noise cells is zero.
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Figure 4: Cell energy distribution for a 50 GeV simulated pion in the LAr cells shown in the η-φ
plane given by the cell coordinate for the presampler and the three LAr calorimeter compartments.
The colours indicate the amount of energy deposition for each cell. The energy is given in units of
MeV. The azimuthal angle φ is measured in radians. The colour code varies from compartment to
compartment. All cells surrounded by a black line are part of the topological cluster.
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Figure 5: Cell energy distribution for a 50 GeV simulated pion in the TileCal cells shown in the
η-φ plane for the three compartments. The azimuthal angle φ is measured in radians. The colours
indicate the amount of energy for each cell. The energy is given in units of MeV. The colour code
varies from compartment to compartment. All cells surrounded by a black line are part of one
topological cluster with the highest energy.
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4 Data-Set
The data used in this analysis were taken in September 2004, when all detectors were operated in the
combined test-beam. Events are triggered by the S1, S2 and S2 scintillators. A veto on the muon halo and
the muon veto scintillator is applied on-line. Runs with beam momenta ranging from 2 to 180 GeV are
used. No magnetic field was used to deflect the beam particle. The beam impinged on the calorimeter
system at an angle corresponding to a virtual angle in the ATLAS experiment of η = 0.45 and φ = 0.
The beam with a momentum of 20 to 180 GeV are secondary beams while all other beam momenta
are tertiary beams. The particles in the momentum range from 2 to 9 GeV are produced in the VLE
beam-line. The beam particle charge was negative14). In the following data (or simulations) with beam
momenta between 2 and 9 GeV are called VLE (very low energy) data-set, HE (high energy) data-set for
beam momenta from 20 to 180 GeV.

The HE and VLE data-set are listed in Table 4. For each nominal particle momentum the run number,
the nominal particle type, the nominal and measured beam momentum, the electrical charge, the total
number of events available and the number of selected and identified electrons and pions are given. The
measurement of the beam momentum is described in section 2.2. The selection of events is explained in
section 6.

In the VLE beam line the particle type is not well-defined by the beam setting and the nominal particle
type is therefore labelled e/π . When available, a nominal electron (labelled e) or nominal pion (labelled
π) run is used to select electrons or pions, respectively. For higher beam momenta Pbeam ≥ 20 GeV for
nominal pion beams (labelled π) a piece of lead is installed in the beam line such that most of the
electrons do not reach the scintillator trigger. For these beam momenta nominal electron runs (labelled
e) are used to provide the electron control sample. The selection of identified pions and electrons is
described in section 7.1.

For the run at 180 GeV only a nominal electron run is available and the pions contaminating the
electron beam are selected15) . In addition, for this run some aluminium plates were introduced before
and after the SCT. For pions such changes in the geometry have only a small effect. In the MC simulation
these geometry changes are taken into account (see Table 6). The TRT position in the VLE runs was at
y = 112 mm while for the HE runs it was at y = −8 mm.

14)The H8 VLE beam-line can be operated with positively and negatively charged particles. It was explicitly checked that
negative charge was selected.

15)In the H8 beam line the pion contamination in nominal electron runs is relatively large.

18



Run-Nr type 〈η〉 Pnom
beam Pmeas

beam charge Nevents Nelectrons Npions
(GeV) (GeV)

2102099 e/π 0.443 2 2.05 − 390000 22495 1703
2102115 e/π
2102117 e/π
2102098 e/π 0.443 3 3.05 − 200000 16660 2903
2102097 e/π 0.443 5 5.09 − 200000 15987 7395
2102095 e/π 0.443 9 9.04 − 200000 10765 14534
2102096
2102392 π 0.44 20 20.16 + 130000 14 20668
2102393
2102394
2102395
2102396
2102397 e 100000 16437
2102343 π 0.44 50 50.29 + 230000 17 58822
2102345 π
2102347 π
2102403 e
2102410 e 200000 31930
2102353 π 0.436 100 99.8 + 180000 4 40893
2102354
2102355
2102398 e 200000 26205
2102225 e 0.432 180 179.67 + 110000 3060 12168

Table 4: Run number, nominal particle type, average pion impact point in the η-direction, nominal
and measured beam momentum, charge of the beam particle, total number of events available
and number of identified electrons and pions. Runs with equal particle type and beam particle
momentum have been merged. The total number of events and identified particles refer to the
merged data-set and is quoted for the first run of a given momentum and particle type.
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5 Monte Carlo Simulation Tools
The Monte Carlo simulation models the interaction of particles with the detector material on a micro-
scopic level. The visible deposited energy for each particle passing through the active part of a calorime-
ter cell is recorded and all energy deposits for this cell in each event are summed up. This signal is
convoluted with a model of the detector response including signal reduction due to saturation, the effect
of the electrical field and of the electronic read-out chain.

The models to simulate particle interactions with the detector material are described in section 5.1.
The simulation of the detector response is discussed in section 5.2.

5.1 Modelling of Particle Interactions with the Detector Material

Nucleon

string

2) Fragmentation
GeV − TeV 

3) Intra−nuclear nucleon cascade
1−10 GeV

4) nuclear processes
10 − 100 MeV

particle

1) Interaction cross−section

Nucleus

up to TeV

Figure 6: Sketch of the main strong interaction types needed to describe the interaction of hadrons
in the detector material, along with their applicable energy ranges.

Physics list Particle Hadron energy range
Low Medium High
(GeV) (GeV) (GeV)

QGSP p,n,π 0−25 LEP > 12 QGSP
QGSP BERT p,n,π 0−9.9 BERT 9.5−25 LEP > 12 QGSP
QGSP BERT NQE p,n,π 0−9.9 BERT 9.5−25 LEP > 12 QGSP
QGSP BERT TRV p,n,π 0−5.4 BERT 5.0−25 LEP > 12 QGSP
QGSP BERT HP n 0.02−0.9 BERT 9.5−25 LEP > 12 QGSP

p,π 0−9.9 BERT 9.5−25 LEP > 12 QGSP
QGSP BIC p,n 0−9.9 BIC 9.5−25 LEP > 12 QGSP

π 0−25 LEP > 12 QGSP
QGS BIC p,n 0−9.9 BIC 9.5−25 LEP > 12 QGSP

π 0−1.3 BIC 1.2−25 LEP > 12 QGSP
QGSP BIC HP n 0.02−0.9 BIC 9.5−25 LEP > 12 QGSP

p 0−9.9 BIC 9.5−25 LEP > 12 QGSP
π 0−25 LEP > 12 QGSP

FTFP p,n,π 0−5 LEP > 4 FTF
FTFP BERT p,n,π 0−5 BERT > 4 FTF
FTF BIC p,n,π 0−5 BIC > 4 FTF

Table 5: Kinematic range of validity for the hadron interaction models used in the various physics
lists in Geant4. Physics lists labelled with HP use a high precision model for neutron interactions
at low energies, i.e. below 20 MeV.

20



The simulation of the particle interactions with calorimeter modules is performed within the ATLAS
software framework ATHENA16) using the Geant4 17) simulation tool-kit [22].

The detailed shower development follows all particles that interact electromagnetically in the
calorimeter with an expected travel path (range) larger than 1 mm. Besides purely electromagnetic
processes, hadron interactions and photo-nuclear interactions are also simulated. Neutrons are followed
in detail up to 10 µsec. After that time all their energy is deposited at their current location.

Fig. 6 shows a sketch of the four phases needed to model the strong interaction of a hadron with a
nucleus. The hadron interaction is modelled in four different ways depending on the energy range:

1. Interaction with the nucleus:
The probability of an interaction is determined from parameterised experimental cross-sections (up
to 10 TeV). The reaction cross-sections for various processes (nuclear fission and capture, elastic
and inelastic scattering) are parameterised using the Axen–Wellisch [23] or the Barashenkov [24]
parameterisation in case of inelastic reactions. The total cross-section is given by the Barashenkov
[24] parameterisation.

2. Fragmentation of the nucleus:
The fragmentation of the partons produced in the hadron nucleon collision is simulated and the
types, energies and directions of the produced particles are defined (≈ 10 GeV - 10 TeV).
For the fragmentation one can either use the Low Energy Parameterised (LEP) or the High Energy
Parameterised (HEP) model or theory-driven fragmentation models based on strings: the quark
gluon string (QGS) model [25–29], or the Fritiof (FTF)model [30–33].
Since Geant4 version 8.3 the inelastic hadron–nucleus scattering is complemented by quasi-elastic
(QE) scattering where a nucleon scatters elastically on a nucleon in the nucleus. This process
takes about 5−10% of the total cross-section and therefore decreases the contribution from deep-
inelastic scattering (based e.g. on QGS).

3. Intra-nuclear cascades:
The interactions of the hadrons in the medium of the nucleus are modelled using intra-nuclear
nucleon cascades (1 – 10 GeV).
For the intra-nuclear cascade either the Bertini [34–36] or the binary cascade [37] model is avail-
able. In addition, elastic scattering of protons and neutrons is included, mainly based on parame-
terisation of forward and backward diffractive cross-section measurements.

4. Nuclear processes:
The remnants of the nuclei are de-excited or split via spallation, break-up, fission etc. (1 –
100 MeV). At this stage a sizable number of nucleons, preferentially neutrons, can be evaporated.
The binding energy to release these nucleons is taken from the initial hadrons. The total amount of
energy absorbed through nuclear processes can be as high as 20 – 40% and fluctuates significantly
event by event.
For the de-excitation of the remnant nuclei and for nucleon-nucleus interactions the pre-compound
model (P) is used in the energy range of 0− 200 MeV18). Once an equilibrium is reached in the
nucleus, nuclear evaporation and break-up are modelled. In addition, capture of particles at rest in
nuclei and nuclear decays are simulated in a crude parameterised way or, for all physics lists except
LHEP and only for negatively charged particles, using the chrial invariant phase space (CHIPS)

16)Version 12.0.95 is used.
17)Version 9.1 patch0 is used.
18)Physics lists with the binary cascade included make use of pre-compound only below 45 MeV kinetic energy.
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model. Precise models for neutrons transport and neutron nucleus interactions based on data tables
are available within the high-precision neutron model (HP) for neutrons from thermal energies up
to 20 MeV.

In the following the main hadronic interaction models are shortly described:

• Low and High Energy Parameterised Model (LEP and HEP)
The LEP model for interactions of hadrons at low energies and the HEP model for higher energies
use parameterisation of measured and extrapolated reaction cross-sections, particle spectra and
multiplicities for the simulation of the hadron showers. Several parameters have been tuned in a
global fit to describe a large amount of hadron–hadron scattering data.
The parameterised models provide fast simulation, but baryon and meson resonances are not pro-
duced and the secondary angular distributions for low energy reactions of O(100 MeV) can not be
described in detail. Also, energy and momentum conservation is not ensured for each interaction.
This model is a re-implementation of the GHEISHA model in Geant3.21 [38].

• Quark Gluon String Model (QGS)
The QGS model [25–29] describes hadron–nucleus interactions by selecting the collision partners
from the nucleus, splitting the nucleon into quarks and di-quarks and forming and fragmenting
excited strings. As a last step the nucleus is de-excited.
The hadron–nucleon cross-sections are calculated in the quasi-eikonal approximation and assum-
ing parton density distributions for the hadrons and the nucleons. The probability of an inelastic
collision with a nucleon is calculated using the Regge–Gribov approach [39]. The initial inter-
action is modelled via Pomeron exchange that mediates the strong interaction 19) (dashed line in
Fig. 6b).
The Pomeron trajectories (describing the energy and spin dependence of the coupling) have been
obtained from fits to data.
Strings are constructed (from the Pomerons) between the quarks from the projectile or from the
target nuclei following the colour flow. The quarks from the projectile and the target are generated
from the parton density distributions derived from hadron structure functions.
Hadrons are produced from the strings by successively breaking strings into hadrons until the
string mass is so low that two hadrons can be created. The transverse momentum distribution of
the hadrons is sampled from a Gaussian distribution with an average of 500 MeV; the longitudinal
momentum distribution is sampled from fragmentation functions obtained from data.

• Fritiof fragmentation model (FTF)
The FTF model [30–33] is a string-dynamical hadronic interaction model without colour exchange.
It foresees an exchange of the longitudinal momenta of the initial hadrons leading to two indepen-
dent highly excited final state strings that are fragmented according to the Lund model [40].
When two hadrons collide a chain of dipoles is created. Each dipole carries a fraction of the total
hadron energy and the dipoles can exchange momentum.
The momentum transfers between the hadrons is represented by independent and incoherent scat-
tering between pairs of dipoles. Unless there is a hard scattering in the event, there is no re-ordering
of the dipole chain, i.e. no quantum numbers are exchanged.

19)The Pomeron describes in the Regge-Gribov approach the interaction of two hadrons in the t-channel. In the interaction
no quantum numbers are exchanged. Characteristic of a Pomeron exchange is that the cross-section slowly rises with energy
towards high energy.
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The final state after the collision consist of two excited hadron states. Highly excited mass states
are possible, even if the transverse momentum exchange is very small, because the longitudinal
momentum exchange can be large. If the masses of the excited states are minimal, diffractive
events are produced. In this case the momentum transfer between the two systems falls off expo-
nentially. The decays of the excited states are handled with the Lund fragmentation model. The
rapidly separating colour charges also cause the emission of gluons.
Nuclei are modelled as ensembles of nucleons subject to Fermi motion within the nucleus, while
taking the nuclear binding energy into account. An impinging hadron that passes through the
nucleus produces a set of independent collisions with the nucleons. In each collision the impinging
hadron and its collision partner loses longitudinal momentum.
Interactions of the produced hadrons with each other are not taken into account.

• Bertini nucleon–nucleon scattering (BERT)
The Bertini model handles the intra-nuclear hadronic interactions of hadrons20) with kinetic ener-
gies below about 10 GeV, and then de-excites the residual nucleus.
The Bertini model is based on classical scattering. The hadron-nucleon cross-sections and the
angular distributions of the emerging particles are taken from experimental data. The nucleus is
modelled via step-like nuclear density distributions.
The projectile is then transported along straight lines through the nuclear medium (see Fig. 6c) and
interacts according to the free hadron–nucleon total cross-section. The nuclear medium is approx-
imated by concentric constant-density shells. At the shell boundaries a particle can be reflected or
transmitted. The secondaries from the initial or subsequent interactions are also propagated in the
nuclear medium and interact until they leave the nucleus.
During the cascade excited residual nuclei are formed, which can evaporate neutrons or alpha
particles and radiate photons due to inter-nuclear transitions, as well as undergo weak decays with
subsequent de-excitation (see Fig. 6d).

• Binary nucleon-nucleon scattering (BIC)
A 3D-model of the nucleus placing nucleons in space according to nuclear densities is used. The
nucleon momenta are taken from a Fermi gas model. The incident particles and subsequent secon-
daries are propagated through the nucleus along curved paths according to the equation of motion
in the nuclear potential. Hadron–nucleon collisions are either elastic21) or form a resonances (such
as delta particles and higher mass states up to about 2 GeV), which decay according to their quan-
tum numbers. The kinematics is based on 2 → 2 or 2 → 1 interactions with the target nucleus.
The resonances can either interact or decay. The cascade stops when the mean energy of all
scattered particles is in the range of 10 to 20 MeV.

Within the Geant4 simulation framework several models can be used to simulate the interaction of
particles with matter. The applicability of the model depends on the particle type, the energy range and
the target material. A sketch of the available interaction models and their approximate energy range is
shown in Fig. 7.

A “physics list” is a consistent collection of models that covers the interaction of all particles in the
whole energy range from thermal energies up to several TeV. Depending on the application, the required
physics performance and the available computing time, different physics lists can be chosen.

The range of applicability of the available models to compose a physics lists for each particle type is
shown in Table. 6. In the overlap region of two models, one model is chosen based on a linearly varying

20)The scattering can be initiated by protons, neutrons, pions or kaons.
21)At low energies elastic hadron–nucleon scattering is the only possibility.
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probability. The lower (higher) value gives the energy point where only the model valid at lower (higher)
energies is used.
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Figure 7: Sketch of the models used to simulate hadronic interactions depending on the energy of
a particle in a hadron shower. The dashed area indicates the parameterised models.
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5.2 Modelling of the Detector Response
5.2.1 The LAr Calorimeter

The simulation set-up of the LAr calorimeter module is based on an ensemble of lead absorbers and
electrodes arranged in an accordion shape. The absorber thickness22) is about 2.21 mm and the electrode
thickness is 0.275 mm. The electrode is made out of a mixture of copper and kapton. The absorber
is constructed from an effective material representing a single mixture of lead, iron and glue. The free
space between the absorbers and the electrodes is filled with liquid argon. The material of the spacers
(honeycomb) is neglected.

The visible energy deposited in the liquid argon for each calorimeter cell is recorded.
Recombination effects in the liquid argon depending on the electrical field are included in current

maps from which the fraction of charge reaching the electrodes is calculated as a function of the position
of the energy deposition. The drift time is taken into account. Measured values from ref. [41] are used.

The maps of the induced current are calculated taking into account the distortion of the electric
field in the accordion structure. Normalisation factors equalising the response in the regions of uniform
electrical field are applied to ensure correct inter-calibration of the accordion compartments.

Recombination effects depending on the amount of deposited energy are emulated using Birks law23)

[43,44]. The response reduction of the deposited energy E0 to the measurable energy E is parameterised
as:

E
E0

=
A

1+ k dE/dx , (4)

where dE/dx is the deposited energy of the particle and the parameter k is set to k = 0.0486 (g/cm2)
MeV24). The overall normalisation parameter is taken such that the response for electrons is not changed
25), i.e. A = 1.008. The choice of the parameters and the implementation is discussed in ref. [45].

Effects of the electronics chain are taken into account in the digitisation step. The signal is simulated
and then reconstructed as it would be in real data. This takes into account possible biases from the
energy reconstruction algorithm, from the ADC conversion, gain switch, etc.. The sampling fraction
used to covert the energy deposited in the liquit argon to the total electromagnetic energy (including the
absorber) is fsamp = 0.1667 [11].

Simulation and digitisation in the LAr calorimeter is described in detail in ref. [46, 47].

5.2.2 The Tile Calorimeter

The simulation of the TileCal uses the detailed structure of the scintillating tiles and the iron absorber.
The simulation of the TileCal scintillators includes saturation effects modelled according to Birks

law and the effects of photo-statistics in the photo-multipliers. However, no attempt is made to describe
the detailed optical properties of the scintillating tiles and the read-out fibres. Also the light attenuation
between the two PMTs is not modelled. A simple linear interpolation is used to distribute the energy
to the PMT on each cell side. The maximal drop of the signal between the two PMTs of a cell due to
non-linearities is not larger than 5%.

The response attenuation of organic scintillators due to quenching can be taken into account accord-
ing to:

E
E0

=
1

1+ k1 dE/dx+ k2 (dE/dx)2 , (5)

22)The absorber thickness corresponds to the average of the measured ones [8].
23)Birks law was originally derived to describe the saturation of scintillators. Later it was found that such a law can also

describe saturation effects in LAr calorimeters. For a recent discussion see ref. [42].
24)The approximation that the electric field is 10 kV/cm through the electrodes is made.
25)The dependence of the recombination on the electrical field is already included in the effective current maps.
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where k1 = 0.013 g/(MeV cm2) and k2 = 9.6 ·10−6 g2/(MeV2 cm4). These values correspond to mea-
surements on organic scintillators [48]. For particles with a charge larger than the elementary charge,
such as alpha particles, the parameter k1 is reduced by 7.2/12.6.

The number of photon electrons (pe) produced in the photomultiplier is emulated using a Poisson
distribution with a mean of 70 pe/GeV. This number has been adjusted to well describe the width of the
muon signal [49].

The sampling fraction to convert the visible energy deposited in the scintillator to the total visible
energy deposited in both the active and the passive material used is fsamp = 34.3.

5.2.3 Calorimeter Noise Simulation

For both calorimeters, the electronic noise was extracted from experimental data using randomly trig-
gered events. A Gaussian parameterisation of the noise is used. The noise is added incoherently to
the energy of each cell or PMT in the MC samples. In the LAr calorimeter the noise auto-correlation
between different time samples is also taken into account.

In the LAr calorimeter, cross-talk effects between neighbouring cells (between the cells of the first
compartment and the ones in the second and the third compartment) are taken into account.

Coherent noise is not simulated, but known to be relatively small [50]. For all data taking periods the
same noise is assumed. It has been checked that for the data-set under study here, the measured noise is
well described by the MC simulation [49].

5.2.4 Treatment of the Time Structure of Hadron Showers

The energy deposits by particles in a hadron shower can arrive at different times. While the electromag-
netic energy component is deposited immediately when the particles interact with the detector, energy
deposits caused by neutrons can be several milliseconds later, since thermal neutrons can scatter around
in the calorimeter material for a long time. An example of a late energy deposition caused by neutrons is
the one by electrons produced in pair-production from photons emitted from nuclei that had been excited
by a low energetic neutron.

However, the calorimeter is only sensitive in a certain time window that is defined by the read-out
electronics. The typical time where the calorimeter measures energy depositions is 20−30 ns. For both
the LAr and the Tile calorimeter, this effect is taken into account in the simulation by determining the
energy deposition as a function of the time (in bins of 2.5 ns) and in the digitisation step by convoluting
this time profile with the pulse-shape used to reconstruct the energy from the samples.

5.2.5 Simulation of the Inner Detector

The three parts (Pixel, SCT, and TRT) of the ID are described by the centrally administrated GeoModel
[51]. GeoModel provides type, amount, and positions of all the material used in the ID, including the
active detector parts and the dead material such as structural supports and services.

The Pixel and SCT detectors are modelled by silicon wafers, electronics, cooling, and other ser-
vices. The Pixel detector consist of three compartments, the SCT of four. The TRT is made up of
Kapton/Mylar26) straws of 4 mm radius containing a gas mixture of O2, CO2, and Xe in proportions 3%,
27%, and 70%, respectively. The straws are surrounded by a light stringy radiator material.

The material model is validated through comparison of the GeoModel and the measured weight of
the detector parts, which is accurate to a few percent for the barrel part [6].
The energy deposit from physics interactions are converted into an amount of ionisation, which is then
drifted to the nearby anode, where it gives rise to a signal. This signal is the output of the digitisation step,

26)Kapton and Mylar are trademarks.

26



and can be compared to the output of the actual detector. The conversion of energy deposits to ionisation
includes recapture probability, drift velocity variations, noise and dead channels, known response of
front-end electronics, pulse shaping, and conversion into bits through a threshold (two in the case of the
TRT). Unlike the simulation, the digitisation is carried out by custom software packages specific to each
sub-detector, due to technological differences between these.
Particularly for the study at hand, the two TRT thresholds in simulation are tuned to match the test-beam
data, since accurate calculations are not easily obtainable. The probability of passing the higher threshold
(HT) level has an onset at a Lorentz gamma–factor of ≈ 1000, and is well described for all particle types
by a logistic sigmoid function as follows:

pHT(γ) = 0.0264+0.00025× log10(γ)
︸ ︷︷ ︸

ionisation part

+
0.153

1+ exp(−(log10(γ)−3.30)/0.270)
︸ ︷︷ ︸

transition radiation part

(6)

The values are obtained by adjusting them to data. The separation between electrons and pions (and on
a statistical basis pions and protons) is based on this function.

The use of the transition radiation to identify electrons and pions is discussed in section 7.1.

5.2.6 Simulation of the Combined Set-up

The sub-detectors described above are placed as in the real test beam set-up (see section 2.1). However,
the beam-line detectors are not simulated. The trigger scintillators are not simulated27) .

The simulation also includes the cryostat walls of the LAr calorimeter, the ROHACELL block to
exclude the liquid argon before the presampler and the LAr calorimeter. The read-out electronics and
cables are simulated in an effective way.

The upstream material in the beam line (air, beam windows and beam chambers) amounts to 13.2%
of a radiation length. It is simulated in an effective way by placing an equivalent piece of aluminium 1 m
before the point x = 0 that would correspond to the beam interaction point in the ATLAS geometry. The
amount of material in front of the calorimeter has been validated using electrons [5].

In order to facilitate the simulation of the beam divergence the simulation is started at x = 1.1 m.
The beam divergence has been measured using tracks in the Pixel and the SCT detector. The polar and
azimuthal angles and the closest impact points in the direction transverse to the beam axis are measured
and the are included in the simulation. After including the measured beam divergence good agreement
with the data is achieved.

For the HE data-set an aluminium plate corresponding to 15%X0 (“far material”) has been put at the
beginning of the beam-line to model in an effective way the material that is crossed by the beam, i.e. the
air, the beam-line windows, the Cherenkov counter etc. For the VLE data-set no far material has been
added, since the beam momentum selection is done near the detector set-up. This far material is needed
to properly describe the energy sharing between the first and second compartment for electrons in the
LAr calorimeter in the HE runs.

Effects due to the beam-line optics which determine down to which energy a particle can still enter
the detector set-up can be calculated using a detailed beam-line simulation. Such acceptance corrections
are important for electrons, but can be neglected for pions.

5.2.7 Simulated Data-Sets

In the simulation negatively charged pions have been used28).
27)The effect of the trigger acceptance is emulated by requiring a long track in the TRT.
28)It was checked that the Monte Carlo prediction is the same for positively charged pions in the Geant4 simulation.
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Momentum (GeV) η Geometry
Far mat Lead Pixel Al SCT Al

< 12.5 0.442 no no yes no yes no
< 35 0.434 yes yes yes no yes no
< 75 0.439 yes no yes no yes no
< 150 0.438 yes yes yes no yes no
< 250 0.431 yes no yes 10 mm yes 20 mm

Table 6: Geometry used to simulate the test-beam set-up. Given is the pion energy range, the
pseudo-rapidity impact point of the beam particles, the presence of far material (Far mat) consist-
ing of air, beam-line windows etc., a lead plate (Lead) to absorb electrons in the beam-line, the
presence of the Pixel and the SCT detectors and of two Aluminium plates (Al) between the Pixel
and the SCT detector that have been installed for testing purposes.

A large sample of events was generated for each considered physics list and for each beam mo-
mentum and each particle type. The Monte Carlo sample is always larger than the corresponding data
sample.

The simulation is done at the nominal beam energy, but in the analysis the cell energy of the simulated
events are rescaled to the measured beam momentum given in Table 4. Where necessary, simulated pions
and protons samples are mixed together according to the measured proton fraction (see Table 10).

The impact point of the particles to the calorimeter has been adjusted for each run. To exactly
reproduce the η and φ barycentre of the shower in the calorimeter, a reweighting of the simulated events
to the η and φ distribution in the data is performed.

Pion decays are taken out of the simulation by removing all muons passing the TRT detector that are
produced in a pion decay29) .

29)Since the length of the beam-line is different in data and Monte Carlo simulation it is better to evaluate the systematics
due to pion decays in the data instead of simulating the pion decay. Moreover, since the trigger acceptance is not correctly
modelled, the momentum distribution of the pion decays in the Monte Carlo simulation does not correspond to the one in data.
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6 Event Selection
The off-line event selection is based on the beam monitor detectors and the tracking system. It is ex-
plained in the following:

1. Scintillator signal compatible with one particle:
One physics trigger and a signal in the S1 scintillator that is compatible with one charged particle
(150 < S1 < 1000 ADC–counts) is required. The signal in the muon beam halo scintillator must
be smaller than 4000 ADC–counts.

2. Event time in fiducial LAr time reconstruction interval:
In some of the events the time given by the trigger is close to the beginning or the end of the particle
arrival time with respect to the DAQ clock signal that has a period of 25 ns (see section 3.1). In
this case the LAr reconstruction can not choose the correct OFC parameter set with the required
precision and therefore such events are rejected30) .

3. Particle close to the beam-line:
Three beam chambers are used to remove particles that are in the halo of the beam: BC–1 and BC0
for all data and, in addition, BC–2 for the VLE data.
First the two beam chambers BC–1 and BC0 in the HE beam-line are aligned with respect to each
other and then the difference in each of the transverse directions is required to be within three times
the root-mean-square of the distribution (see ref. [4,5] for more details). Different values are used
for the VLE and the HE data-sets. To ensure that a particle passes through the VLE beam-line, a
hit in BC–2 close to the beam-line is required.

4. No coherent noise in the presampler:
In some of the events the presampler cells were subject to bursts of coherent noise31) that changed
the pedestal values in either the positive or the negative direction affecting most of the channels
in the module. In such cases, a large number of cells can be included in a topological cluster (see
section 3.3) and the sum of all presampler cells can be very large (positive or negative). To remove
such events the sum of all cells outside the nominal η beam impact point, ηnom, (ηnom + 0.1 ≤
ηcell ≤ ηnom −0.1) should be smaller than 3 GeV or larger than −3 GeV.

5. One good track in the full tracking system:
The track reconstruction provides tracks in the three individual tracking detectors (Pixel, SCT and
TRT) as well as global tracks where the hits in the three subsystems are fit together. Because
of residual alignment problems, the global tracks in some cases do not contain the TRT track.
Therefore, both the global and the stand-alone TRT tracks are used to reduce the number of events
that interact strongly before or in the tracking system.
At least one global track with more than six Pixel or SCT hits and one TRT track with more
than 30 low threshold hits are required. This requirement ensures that the particle actually passes
through the Pixel and SCT detectors and does not, for instance, interact with the (close-by) support
structures of these detectors. No other reconstructed TRT track is allowed32).
As an example, the TRT hit distribution in the x-y plane is shown in Fig. 8 for an event with a beam
momentum of 3 GeV that successfully passes the electron selection (a) and a pion with 2 GeV that
did not fulfil the requirements on the total number of TRT hits (b). The pion in Fig. 8b interacts

30)Technically, this is achieved by requiring that there is at least one reconstructed calorimeter cell.
31)The coherent noise was correlated to a grounding problem.
32)Reconstructed tracks in the TRT have more than 20 hits.
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strongly with the TRT material shortly before the end of the TRT and 3− 4 outgoing tracks are
produced. Two of the outgoing particles have a large number of higher-threshold hits and are
therefore likely to be protons at low momenta.

6. TileCal reconstructed time within fiducial volume and no bad TileCal photo-multiplier signal:
The reconstructed time in the TileCal has to be in a fiducial time range. The time requirement reject
off-axis muons from the HE beam-line in the VLE data-set. Details are given in section 7.3.1.
In some of the events, photo-multiplier signals appear in low gain, but have a signal that is com-
patible with noise33). Since for these signals, the energy can not be reliably measured, events are
rejected, if such a problem is observed for any of the photo-multipliers.

7. Muon rejection:
To reject muons a signal compatible with noise is required in the muon scintillator downstream of
the beam-line (µtag)34). This muon tagger is able to positively identify muons moving close to the
beam axis with an efficiency of 98% [49]. However, its acceptance is not large enough to reject all
muons in the beam or the beam halo. Therefore, additional cuts are required.
In the HE data-set, the sum of the energy in the two topological clusters (see section 3.3) with
the highest energy is required to be at least 5 GeV. Such a cut does not bias the pion sample and
efficiently removes all muon events.
In the VLE data-set, muons can not be removed with a cut on the total energy, because the energy
deposits from pions are in the same energy range. Besides muons at the beam momentum there
are also muons at high momenta produced by the secondary beam. Such muons accidentally pass
through the HE beam line and often leave a signal in the calorimeter that does not coincide with
the time given by the trigger. Such events are rejected by a cut on the reconstructed time of the
TileCal cells, if at least one TileCal cell with a signal above 5 standard deviation of the noise is
found outside a small time window (see section 7.3 for more details).
In addition, muons from pion decays are removed by an estimator constructed from the shape of
the expected energy deposition of muons in the calorimeter (see section 7.3.2 and Table 12).

The fraction of events removed by the various selection cuts are summarised in Table 7. The individual
cuts are applied one after another from top to bottom. The fraction of remaining events is given with
respect to the total number of events available in the run (see Table 4). Each selection cut is applied on
the event sample satisfying the cuts applied before (i.e. listed above the cut under study).

The rejection factors are similar for all studied beam momenta. Only the requirement of one long
track shows some variation with the beam momentum. The largest fraction of events is removed by the
cuts on the scintillator and the beam chambers, which are applied first. The large rejection factors due
to the requirement of accepting only particles close to the beam line in the beam chambers is caused by
a malfunctioning of the beam chambers that for many events are not able to measure the position of the
particles 35).

The requirement of one long track removes about 1% to 10% of the events surviving the cuts applied
before. The fraction of rejected events decreases for increase pion momentum. In the VLE data-set the
largest part of the events are rejected by the requirement on the Pixel and the SCT hits. Only about 0.1 to

33)The reason for this is unclear. The only explanation put forward for this problem is that it is caused by a change of the
signal base-line due to large signals recorded before the event in question.

34)Since the pedestal is different in the two data-sets, for the VLE data, 370 < µtag < 400 ADC–counts and for the HE data
360 < µtag < 450 ADC–counts is required.

35)Technically, this can be recognised by a zero in the TDC signal of the beam chambers that is used to reconstruct the position
where the particle crossed the wire.
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Selection Nominal beam momentum in GeV
2 3 5 9 20 50 100 180

Event timing: 97.24% 97.27% 97.22% 97.21% 97.10% 97.18% 97.25% 97.07%
Scintillators: 73.66% 74.61% 75.27% 74.88% 80.72% 76.63% 77.01% 72.61%

Ecluster
min - - - - 73.45% 71.86% 64.70% 64.44%

Beam chambers: 28.33% 31.55% 31.52% 28.16% 33.72% 33.46% 31.15% 30.5%
PS coherent noise: 26.84% 30.01% 29.92% 26.73% 31.79% 31.50% 28.70% 30.5%
One good tracks: 14.0% 18.73% 22.55% 25.08% 25.08% 30.28% 27.52% 28.17%
TileCal Timing : 13.46% 17.76% 21.08% 23.07% - - - -
Muon rejection: 13.34% 17.61% 20.06% 22.44% - - - -

Table 7: Fraction of events remaining after each individual selection cuts for each considered
beam momentum. The cuts are successively applied from top to bottom. The fraction is given
with respect to the total number of events available.

0.3% of the events are removed by requiring a long TRT track. However, in the HE data-set the amount
of events removed by the Pixel and SCT requirement and the one of the TRT is about equal36).
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a) b)
Figure 8: Example of the hit distribution in the TRT in the x-y plane for an identified electron with
a beam momentum of 3 GeV (a) and for an identified pion at 2 GeV (b). The pion event does
not pass the event selection criteria on the number of TRT tack hits, the electron does. Each dot
corresponds to a TRT hit passing the low threshold. The small vertical lines denote a TRT hit that
passes the higher threshold.

36)Only at 20 GeV about 5% of the events are removed by the TRT requirement.
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7 Particle Identification
The hadron beams produced at the H8 beam-line contain in general a mixture of electrons, muons, pions,
protons and, possibly, also kaons. The beam composition depends on the beam momentum, the used
target (primary, secondary or tertiary) and the beam line optics.

The various detectors in the beam-line and the ATLAS inner detector system can be used to identify
particles of certain types and can measure the possible contamination by other particle types. In order
not to bias the calorimeter response, only minimal use is made of the calorimeter itself for particle
identification.

7.1 Electron and Pion Identification
The separation of electrons and pions is done using the Cherenkov counter in the VLE beam-line and the
TRT. Since these detectors are uncorrelated and can provide rather clean samples of pions and electrons,
they can be mutually used to determine the purity of the selected sample.

The pressure of the Cherenkov counter gas can be set such that electrons give a large signal while
pions give a signal compatible with noise. A large Cherenkov signal is therefore likely to come from an
electron while a low signal from a pion. Besides its tracking capability the TRT detector is also able to
identify electrons using transition radiation37) (TR) interacting with the Xenon in the TRT straws.

The signature of TR are signals above the higher threshold (HT). The probability for an electron to
produce a HT hit is typically 18-20%, while it is 3-4% for other particles (mainly caused by fluctuations
in the energy deposit (dE/dx)), depending on Lorentz γ–factor (see Fig. 11a). The number of higher-
threshold (HT) track hits of a given track (NHT) can therefore be used to separate electrons from pions.

In the HE data-set, where no Cherenkov counter was available, the identification of electrons and
pions is achieved by using the number of HT hits in the TRT and the fraction of the energy in the
LAr calorimeter to the total energy (ELAr/Etot). The energy is obtained from a sum over all topological
clusters in the event. The selection criteria are summarised in Table 8.

In the VLE sample the separation of pions from electrons is more difficult, since the signals are more
similar, but one can make use of the presence of a Cherenkov counter. The distribution of the Cherenkov
counter signal for beam momenta of 2, 3, 5 and 9 GeV is shown in Fig. 9. The distribution of the HT
hits is shown in Fig. 10. The closed points show the distribution of the data with all event selection cuts
applied (see section 6). There are clearly two distinct classes of events corresponding to electrons and
pions.

Since the Cherenkov counter and the TRT provide independent measurements, the purity of the signal
can be obtained from two control samples where electrons and pions with high purity are selected. The
selection criteria of the control sample are given in Table. 8. To improve the purity of the control samples,
the ratio of the energy in the first and second compartment of the LAr calorimeter38) is used in addition
to the Cherenkov and TRT selection criteria.

The pure pion (electron) sample is shown as solid (dashed) line in Fig. 9 and Fig. 10. The electron
and pion samples are normalised to match the distribution of all data in the low and high signal regions,
where the purity is high. The sum of the normalised control samples describes the distribution of all
events well. The pion–electron separation becomes more difficult towards lower energy.

The shape of the control samples can be used to determine the best selection criteria for the standard
sample. For test-beam analysis it is important that a sample with high purity is selected and enough events
are retained to study the calorimeter response. The chosen selection cuts are summarised in Table 8.

37)Transition radiation is emitted when a charged particle passes the interface between two materials with different dielectric
constants. The effect is only significant at high Lorentz γ–factor (> 1000), and thus is mostly caused by electrons.

38)The energy is reconstructed in a standard electron cluster using the cells corresponding to a η and φ region of three cells
in the middle layer around the cell with the highest energy [3, 11].
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Data-set VLE HE
Particle type electron pion electron pion

Selection standard control standard control standard standard
Cherenkov (ADC counts) > 650 > 850 < 600 < 580
Number of HT hits (NHT ) > 5 > 8 < 3 < 2 > 5 < 3

ELAr/Etot > 0.99 > 0.99 < 0.99
ELAr,1/ELAr,2 > 0.6 < 0.3

Table 8: Selection criteria to identify electrons and pions in the VLE and HE data-sets. Given are
the values to select the standard data sample (standard) and the control samples (control) with a
very high particle type purity.

Pbeam Cherenkov TRT
(GeV) effπ (%) conte (%) effπ (%) conte (%)

2 85.5 5.3 87.8 3.7
3 87.9 1.2 85.8 0.8
5 84.8 0.3 84.8 0.2
9 86.2 0.06 82.5 0.05

Table 9: Efficiency to identify pions (effπ ) and the residual electron contamination (conte) in
the standard pion sample selected with the Cherenkov counter signal and the number of higher
threshold hits in the TRT. Since the measurements are independent the combined performance can
be obtained my multiplication.

The efficiency and purity of the obtained standard event sample can be determined using the shape
of the normalised control samples by counting the number of selected events in both samples. This
method assumes that the residual contamination in the control samples is negligible39) . The results are
summarised in Table 9.

The pion selection efficiency is about 85% for the Cherenkov counter and the TRT separately. Gen-
erally, the electron contamination increases towards low beam momenta. The electron contamination is
0.25% for simultaneous cuts on the Cherenkov and the TRT. The relative statistical uncertainty on the
results in Table 9 is typically about 1% for efficiencies and about 10% for contaminations. The number
of selected pion and electron events is given in Table 4.

39)Actually at 2 GeV the shape of the pion control sample exhibits some electron contamination. However, the effect on the
pion purity of the standard sample is still negligible.
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Figure 9: Distribution of the signal measured in the Cherenkov counter (in ADC–counts) for beam
momenta of 2, 3, 5 and 9 GeV. Shown are all events after the final event selection except a cut on
the Cherenkov counter signal (closed points) and two control data-sets with high purity electrons
(dashed line) and pions (solid line). The dotted line close to the data points shows the sum of the
normalised electron and pion distribution from the control samples.
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Figure 10: Distribution of the number of higher threshold hits of a TRT track (NHT) for beam
momenta of 2, 3, 5 and 9 GeV. Shown are all events after the final event selection except a cut on
NHT (closed points) and two control data-sets with high purity electrons (dashed line) and pions
(solid line). The dotted line close to the data points shows the sum of the normalised electron and
pion distribution from the control samples.
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7.2 Proton Contamination
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Figure 11: a) Probability that the measured charge of a TRT hit passes the higher threshold as a
function of the Lorentz γ–factor of the track for pions, muons and electrons. The line shows a
parameterisation used in the analysis. b) Higher threshold probability as a function of the beam
momentum. The measured probability is shown as open circles; the closed points show the mean
values, together with the uncertainty. The lines show the expected probability for pions and protons
based on the parameterisation.

The TRT was designed to identify electrons that emit a large amount of TR due to their high Lorentz
γ–factor. The probability that hits from an electron track pass the higher level threshold has already be
exploited in section 7.1 to separate electrons from pions.

On a statistical basis this feature can also be used to separate pions from protons at high momenta,
since pions begin to emit TR above beam momenta of about 30 GeV, which is not the case for protons
(until 300 GeV). Using a test-beam sample of identified muons and electrons at various beam momenta
the shape of the HT probability PHT as a function of the Lorentz γ–factor can be measured [6] (see
Fig. 11a).

Using an appropriate parameterisation of PHT, the expected HT probability can be calculated for
pions Pπ

HT and for protons Pp
HT (see Fig. 11b). By comparing Pπ

HT and Pp
HT with the measured Pmeas

HT in a
given run the fraction of protons in the pion beam can be determined.

The HT probability Pmeas
HT was measured in the positive pion runs with beam momenta of 20, 50, 80,

100 and 180 GeV (see Fig. 11b). For each momentum, the fraction of protons in the pion beam ( f p) is
then determined as:

fp =
Pπ

HT−Pmeas
HT

Pπ
HT −Pp

HT
. (7)

The obtained values are summarised in Tab. 10 and also displayed in Fig. 11. The quoted uncertainties
are both statistical and systematic. The systematic uncertainties on the proton fraction are due to un-
certainties in the shape of the PHT and due to an overall scale uncertainty that takes variations between
runs, particle types and event selection into account. The first uncertainty is calculated using a different
parameterisation of PHT and is found to be 2.5% on the proton fraction. The other effects are estimated
to be 0.1% in PHT and hence depend on the beam momentum.

For the VLE runs negatively charged pions have been used. In these runs there is no proton contam-
ination and the anti-proton contamination is negligible.

Fig. 12 shows the proton fraction as a function of the beam momentum (closed points). The solid line
indicates a parameterisation of the dependence of the proton fraction on the beam momentum according

36



Pbeam Pπ
HT Pp

HT Pmeas
HT fp

(GeV) (%) (%) (%) (%)
20 3.40 2.98 3.46±0.09 −0.15±0.32
50 4.19 3.12 3.71±0.08 0.45±0.12
80 5.15 3.22 4.07±0.09 0.56±0.07

100 5.83 3.28 4.28±0.08 0.61±0.06
180 8.49 3.56 4.74±0.07 0.76±0.04

Table 10: Proton fraction ( fp) for each beam momentum as calculated from comparing the HT
probability Pmeas

HT to the expected probabilities for pions and protons (Pπ,p
HT ). The quoted uncertain-

ties are statistical and systematical.
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Figure 12: Proton fraction in nominal pion runs as a function of the beam momentum in the H8
beam-line. Shown as closed circles is the TRT measurement based on a parameterisation of the
higher threshold hit probability as a function of the Lorentz γ–factor. The line indicates a parame-
terisation of the beam momentum dependence. The band illustrates the uncertainty obtained from
repeating the fit from the points offset by the systematic uncertainty.

to a function of the form a+b log Pbeam that is adjusted to the measurements above or equal 50 GeV. The
band illustrates the uncertainty on the parameterisation obtained by shifting the measurements by one
standard deviation of their uncertainty up and down and refitting these modified data points.

The results can also be compared to measurements based on a Cherenkov counter in the HE beam-line
used in the 2002 TileCal test-beam performed in the same beam-line [52,53]. These earlier measurement
agree well with the 2004 results for 50 and 100 GeV. At 20 GeV only a beam with negatively charged
pions was available. For a beam momentum of 180 GeV the measurement based on the Cherenkov
counter in 2002 are lower by 15%. This might be explained by different beam settings40) .

40)For the 2002 analysis a nominal electron run has been used.
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7.3 Muon Contamination
Muons in hadron beams can either stem from pion in-flight decays or be produced at the target and
follow the same trajectory as the hadrons. In the VLE data-sets muons can either be produced in the
HE beam-line and overlay the pion signal or they can be produced by pion decays after passing the VLE
momentum selection.

Beam momentum (GeV) 2 3 5 9
Ne

ETile,D>0.35 GeV/Ne
tot (%) 0.5±0.04 0.7±0.06 0.65±0.06 0.48±0.06

Nπ
ETile,D>0.35 GeV/Nπ

tot (%) 2.1±0.4 1.7±0.24 1.8±0.15 2.8±0.14
Nπ

out−of−time tail shape/Nπ
tot (%) 1.1±0.3 1.3±0.2 1.5±0.1 1.3±0.1

Table 11: Estimations of the fraction of events with a muon from the high energy beam-line over-
layed on the triggered event as estimated from the TileCal energy depositions in the last compart-
ment for events with selected electrons (e) and pions (π) and as estimated from an extrapolation of
the out-of-time PMT signal distribution in TileCal to the in-time region used in the event selection.

7.3.1 Overlayed Muons from the High Energy Beam-Line

In the VLE data-set muons can follow the HE beam-line and reach the LAr and TileCal, by-passing the
muon veto. These muons are displaced with respect to the nominal beam impact point and are not in
time. Their momentum is 40−80 GeV.

The number of muons in the VLE data-set can be determined using the measured arrival time of
the energy deposit in a TileCal cell, since off-axis muons are expected to come at a different time than
the particle that sets the trigger. Moreover, it can be estimated from the energy deposits in the last
TileCal compartment in events with selected electrons and pions. Each of these methods has a different
systematic uncertainty. A more detailed description of the three methods is given in what follows:

1. Estimation based on timing information:
When the energy is reconstructed for each TileCal cell, the particle arrival time at the cell with
respect to the DAQ time (ttrigger) is measured (see section 3.2).
To reconstruct the cell time distribution (ttile,cell ), the average of the two PMTs of this cell is used.
Only PMTs with a signal well above noise are used (E rec

cell > 5σnoise). The noise level σnoise cor-
responds to the average PMT noise level measured per Tile layer and is obtained using random
events. The time measurement for each PMT is calibrated with the measured arrival time of on-
axis particles in the HE data-set measured for each TileCal PMT (t calib

PMT = trec
PMT − toffset

PMT ). From this
calibrated PMT time the time when the particle passes the trigger with respect to the DAQ clock
(ttrigger) is subtracted to obtain the final time measurement.
The calibrated reconstructed cell time is shown in Fig. 13 for beam momenta of 2, 3, 5 and 9 GeV.
The normalisation is such that a weight corresponding to the inverse number of PMTs above the
required noise threshold in the event is applied for each entry such that each event effectively
corresponds to one entry in the time distribution. For selected pion events (solid lines) a peak
around 0 ns with a width of about 10 ns is seen. These events arrive in time. Only events for which
all cells have measured times between the vertical lines are accepted in the analysis (see section 6).
The shape of the time distribution of muons overlayed to triggered events can be estimated from
the shape of the measured time distribution for selected electrons (dashed lines). The distribution
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is normalised to the number of pion events in the tail of the pion distribution. The time distribution
of overlayed muons is rather flat. Only for the events with beam momentum of 2 GeV there seem
to be more events at positive than at negative times. The out-of-time muon fraction is then given
by the normalised number of electron events to the total number of events within the time window.
The estimated muon contamination is reported in the last row of Table 11. The estimated fraction
of HE muons in the pion sample is 1−2 %.

2. Estimation based on the Tile energy distribution in events with identified electrons:
The contamination of muons overlayed to the event under study can also be estimated from the
number of events with a significant energy measured in the last TileCal compartment for events
where an electron has been identified (see section 7.1). For electrons only noise is expected in the
TileCal. The energy in the last TileCal compartment is reconstructed as the sum over all topologi-
cal clusters and all events above 0.35 GeV are counted as muon background.
The estimated muon contamination in the electron sample is reported in the first row of Table 11.
For all studied beam momenta the fraction of events with muons from the HE beam-line is about
0.5%. Similar results are obtained, if all the cells in the TileCal are used instead of only the energy
deposition in the last TileCal compartment,

3. Estimation based on the Tile energy distribution in events with identified pion:
Events with an identified electron can be used to estimate the number of overlayed muons to a
good event. However, a muon from the HE beam-line can occasionly be the only particle in the
event: such events would be identified as pions. This background is suppressed by the require-
ment that there must be a signal in the BC–2 chamber that is located in the VLE beam-line. The
remaining background can be estimated using the same method as above using identified pion
events. Since the hadronic shower development for pions even at low energies can reach the last
TileCal compartment and muons can be produced in a hadron shower, this method gives only the
maximal possible muon contamination in the pion sample. Pion decays to muons are also included
in this estimate (see section 7.3.2).
The maximally possible contamination of muon from the HE beam-line in the pion sample is about
2%. The results are given in the second row of Table 11.

In conclusion, the number of muons passing through the high energy beam-line is small. It will be
neglected in the follwing analysis.
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Figure 13: Distribution of the calibrated reconstructed time in each TileCal cells with E cell
rec >

5σnoise with respect to the time when the particle passes the scintillator trigger for beam momenta
from 2 to 9 GeV. Shown are selected pion events (black solid line) and selected electron events
(red dashed lines). To represent the background shape the electron events are normalised to the
number of pions in the tails. The vertical lines indicate the time window in which all cells of an
event have to be accepted.
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7.3.2 Muons from Pion Decays

Muons from pion decays have momenta lower or equal to the beam momentum. The fraction of decay
muons in the pion beam can be estimated from a beam transport simulation. At a beam momentum of
1 GeV it is about 5% and decreases to about 3% at 9 GeV [54].

The pion decay kinematics implies that the muon momentum is between 0.57 < Pµ/Pπ < 1. However,
the lower the muon momentum the lower the probability that the muon will reach the trigger. From a
simulation of the beam-line it is estimated that the momentum from muons produced in pion decays
peaks near the nominal beam momentum. The lowest momenta are suppressed by the trigger acceptance
by about a factor of 5−10 [54].

The energy deposits of a muon from a pion decay can be estimated using a muon simulation. The
muon energy deposition in the calorimeter is well reproduced by the Monte Carlo simulation [15,19,49].
The mean energy is reproduced to 2% and the energy distribution is reproduced within 10%.

Using a muon simulation the probability that in a given event the energy deposit in the calorimeter
compartment i is compatible with a muon (Pµ

i ) can be calculated and an estimator that the total energy
in the calorimeter is due to muons can be constructed:

PionDecayEstµ = ∏
i

Pi
µ , where i = 1,2,4,5,6. (8)

The index i denotes the calorimeter compartment, i.e. i = 1,2 for the first and second compartment in
the LAr calorimeter and i = 4,5,6 for the three TileCal compartments. Only in these compartments the
signal to background ratio is sufficient to identify a signal from a muon.

The muon decay estimator has a high value, if the energy deposits in all calorimeter compartments
are compatible with the one expected from a muon. The estimator is shown in Fig. 14 for the VLE data-
set. The data are shown as closed points. For beam momenta larger than 3 GeV two distinct classes of
events are clearly visible. The solid line shows the results of a pion simulation. For not too large values
the shape of the data distribution is reasonably well described by the pion simulation. The dashed line
shows a muon simulation that describes the peak for large estimator values. The separation of pions and
low energy muons works well for beam momenta above 2 GeV.

The fraction of low energy decay muons ( fµ ) in the pion sample can be obtained from a fit of the
pion and muon simulation to the shape of the data distribution using:

PionDecayEstData = fµ PionDecayEstMC
µ +(1− fµ) PionDecayEstMC

µ (9)

In the pion simulation, events where the pion decays in or before the TRT have been removed. How-
ever, the sample contains events where the pion decays after the TRT. This explains the peak observed in
the pion simulation at large pion decay estimator values. In order to extract f µ the shape of the pion decay
estimator simulation from the region next to the muon peak has been extrapolated using an exponential
function.

The extracted muon fraction from pion decays is summarised in Table 12. The pion decay fraction
increases for decreasing beam momentum. The result of the fits are included in Fig. 14.

At Pbeam = 2 GeV the separation of pions and muons is difficult. The estimated muon fraction from
pion decays is about 10%. For Pbeam = 3 GeV and Pbeam = 5 GeV two clear peaks are visible. The muon
fraction is 5% and 1%. For Pbeam = 9 GeV a second peak is only visible in the simulation, but not in the
data. The muon fraction of fµ = 0.5% is overestimated.

The muon estimator is used in the selection of the pion events. The cut values are given in Table 12.
The fraction of muons left after the cut is negligible. The bias on the pion response introduced by this
cut will be included in the systematic uncertainty of the pion response.
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Figure 14: Shape of the pion decay estimator distribution describing, if a pion decays before or in
the calorimeter for beam momenta of 2, 3, 5 and 9 GeV. The closed circles denote the data, the
solid line shows a pion Monte Carlo simulation (without pion decays). The dashed lines show a
simulation of muons at the pion momentum scaled down by the factor fµ that is given in the left
upper corner of each figure.

Pbeam (GeV) 2 3 5 9
fµ (%) 9.5 4.7 1.0 0.4

PionDecayEstµ cut -6.5 -7.0 -8.5 -8.5

Table 12: Fraction of low energy muons in the pion sample ( fµ ) and cut values on the pion decay
estimator (PionDecayEstµ ) used to select pion events.
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8 Pion Energy Reconstruction
The pion energy can be reconstructed in several different ways. In the test-beam, where only one pion
in a known direction impinges on the calorimeter, the sum of all calorimeter cells above a certain noise
threshold in a cone of a suitable size provides a simple and robust way to measure the pion energy.
The dependence of the pion response on the applied noise cut and on the cone size is investigated in
section 8.1.

For particles produced in proton-proton collisions, however, the energy deposits belonging to pions
need to be identified and the direction needs to be reconstructed. Moreover, some pion showers might
overlap, if they are, for instance, produced in a jet. An efficient way to collect a maximum of the pion
signal while suppressing noise is provided by the topological cluster algorithm (see section 3.3). The de-
pendence of the pion response on the various settings of the cluster thresholds is studied in section 8.2.1.
Since this is the ATLAS default definition of the calorimeter signal for the reconstruction of the hadron
energy, this method is also used for the data to Monte Carlo comparisons in section 9.

For both methods the pion energy is reconstructed from the three compartments in each of the
LAr and the TileCal calorimeters. The presampler is not used to reconstruct the total energy, since only
little energy (few MeV) is deposited and its main purpose use is for dead material corrections. The en-
ergy is measured at the electromagnetic scale (see section 3). Corrections for the non-compensation of
the calorimeters and energy lost in dead material (DM) are discussed in ref. [55].

Since the pion signal at low energies is non-Gaussian, the pion response and resolution is defined
as the mean and root-mean-square (RMS) of the energy distribution. No fit is performed to get a better
estimate of the peak.

8.1 Response in a Fixed Cone
To reconstruct the pion signal, the energies of all cells above a certain noise threshold (σnoise) are summed
in a cone of size R. All cells with Rcell ≤ R and E rec

cell > Nσnoise are summed, where N is an adjustable
number. The cone is centred around the nominal beam impact point measured for each run, i.e. Rcell =
√

∆η2
cell +∆φ 2

cell, where ∆ηcell = ηcell −ηnom and ∆φcell = φcell −φnom. The nominal beam impact point
in the η-direction is given in Table 4. For all runs φnom = 0.01 is used. The average noise σnoise is
obtained for each calorimeter compartment from randomly triggered events and corresponds to the RMS
of the energy distribution.

The dependence of the pion signal on the noise cut (Nσnoise) for a cone with R = 0.3 is shown in
Fig. 15 and Fig. 16 for noise thresholds from N = 0 (no noise cut) to N = 5 (high noise cut). While for
pions with high momenta, e.g. for Pbeam = 100 GeV, the signal lost when increasing the noise threshold
from low to high values is only 6%, for low-momentum pions, e.g. for Pbeam = 3 GeV, about 70% (45%)
of the signal is lost when applying a cut of N = 5 (N = 2). Above about N = 1 the signal loss decreases
approximately linearly with the noise threshold. The slope gets steeper towards lower energies. It is
remarkable that the mean pion energy relative to the beam momentum seems to increase when going
from 3 GeV to 2 GeV for noise cuts below N = 1.5.

For pions with high momenta the resolution is rather independent of the noise cut, but lower noise
cuts give the best resolution. For lower pion momenta the resolution is approximately constant up to a
noise cut of N = 2 or N = 2.5 and then increases approximately linearly with increasing noise cut. For
pions with Pbeam = 3 GeV and below the best resolution is obtained for N = 2.5.

The dependence of the pion signal on the cone of size R with a noise cut N = 2 is shown in Fig. 17
and Fig. 18. Since in the test-beam geometry there are only three TileCal modules installed, ∆φcell =
φcell −φnom is fixed to 0.3 for all cone sizes R ≥ 0.3.

When increasing the cone size from R = 0.1 to R = 0.8, the pion response and the resolution in-
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Figure 15: Mean response (a) and resolution (b) for pions with a beam momentum of 3, 5, 9, 20
and 100 GeV as a function of the noise cut applied to all cells in a cone of size R = 0.3 used to
reconstruct the energy. Only data and only statistical uncertainties are shown.
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Figure 16: Mean response (a) and resolution (b) for pions as a function of the beam momentum
for various noise thresholds on cells in a cone of size R = 0.3. Only data and only statistical
uncertainties are shown.
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Figure 17: Mean response (a) and resolution (b) for pions with a beam momentum of 3, 5, 9, 20
and 100 GeV as a function of the size of a cone in which all cell energies above N = 2 standard
deviations of the noise are summed. Only data and only statistical uncertainties are shown.
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Figure 18: Mean response (a) and resolution (b) for pions as a function of the beam momentum
for various cone size in which all cells energies above N = 2 standard deviations of the expected
noise are summed. Only data and only statistical uncertainties are shown.

45



creases. For all pion momenta, a cone with R = 0.3 collects almost all the pion signal (about 99% for
pions below 30 GeV and 99.6% for pions above). For pion momenta below 9 GeV, the signal increases
by about 3% when the cone size is changed from R = 0.2 to R = 0.3. For pions at low momenta an
optimal resolution is obtained for R = 0.2− 0.3. Increasing the cone size further, collects more noise
cells and the resolution degrades.

The variation of the response with R is larger for low-energy pions. While for Pbeam = 100 GeV the
signal increases by 10% when the cone size is varied form R = 0.1 to R = 0.8, the variation is 20% for
Pbeam = 3 GeV.

The variation of the relative resolution with respect to the cone size increases towards higher beam
momenta. At 2 GeV the variation is smallest. This means that the relative influence of the radial fluctua-
tions is largest at the highest beam momenta. At 180 GeV the resolution changes by 30% when changing
the cone from R = 0.1 to R = 0.8.

In conclusion, it seems that a noise threshold of N = 2 and a cone size of R = 0.3 gives the best
reconstruction of the pion energy.

8.2 Energy Reconstruction with the Topological Clustering
The topological cluster algorithm serves to define the signal of hadrons in the calorimeters. The clusters
formed by this algorithm will be made easily available for the analysis of ATLAS data and can, for
example, be used to form jets or to calculate the missing transverse energy.

It is therefore important to study the properties of this cluster algorithm also in the test-beam. In
the following (unless stated otherwise) the pion signal is defined as the sum over all topological clusters
identified in the calorimeter.

8.2.1 Response and Resolution Dependence on Topological Clustering Parameters

Fig. 19 summarises the variation in the pion response and resolution for different settings of the thresh-
olds in the topological cluster algorithm for various beam momenta. For high pion momenta, e.g. for
100 GeV the variation is small. For lower momenta the pion response is reduced for increasing seed
thresholds. The variation is approximately linear with a spacing that increases with decreasing beam
momentum.

A significantly higher pion response is also observed when lowering the neighbour threshold from
N = 2 to N = 1. The influence of the neighbour threshold is even larger than the one of the seed threshold.

The result of a scan of the seed threshold S for a neighbour threshold of N = 2 are shown in Fig. 20.
At the lowest pion momenta there is a 30% change in the pion response while above 20 GeV the change
is less than 2%. The best resolution is obtained with the lowest seed threshold.

Fig. 21 shows the result of a scan of the threshold S for a neighbour threshold of N = 1. At the
lowest pion momenta there is a 20% change in the pion response while above 20 GeV the change is less
then 0.5%. It is remarkable that for seed thresholds smaller than 5 the pion response relative to the beam
momentum seems to rise when changing the momentum from 2 GeV to 3 GeV.

The best resolution is obtained with a seed threshold at N = 4. The resolution variation is about 20%
at low pion momenta while it is negligible above 20 GeV.

A scan of the perimeter threshold for S = 4 and N = 2 is shown in Fig. 22. Including all cells in the
perimeter of the cluster after there is no neighbour cells above the neighbour threshold left, increases the
pion response and improves the resolution. For low pion momenta the signal increase is about 10%. For
larger pion momenta the response increase is smaller, but still sizable (at 100 GeV it is 5%). The gain in
resolution is visible for all pion momenta. The difference between P = 0 (all cells) and P = 1 is rather
small.
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Figure 19: Mean response (a) and resolution (b) for pions with a beam momentum of 3, 5, 9,
20 and 100 GeV as a function of various settings of the topological cluster algorithm. The first
number refers to the seed, the second to the neighbour and the third to the perimeter threshold.
Only data and only statistical uncertainties are shown. All clusters in the calorimeter are used to
reconstruct the pion energy.
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Figure 20: Mean response (a) and resolution (b) for pions as a function of the beam momentum for
various setting of the seed threshold of the topological cluster algorithm. The neighbour threshold
is fixed to N = 2 and the perimeter threshold to P = 0. Only data and only statistical uncertainties
are shown.
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Figure 21: Mean response (a) and resolution (b) for pions as a function of the beam momentum for
various setting of the seed threshold of the topological cluster algorithm. The neighbour threshold
is fixed to N = 1 and the perimeter threshold to P = 0. Only data and only statistical uncertainties
are shown.

8.2.2 Leading Topological Cluster Fraction

Having the topological cluster to include most of the energy depositions from a hadron is benficial to
many application. For instance, this would give a more physical meaning to the weighting and dead
material corrections that are based on the total cluster energy or the energy fraction in the calorimeter
compartment of the cluster and is therefore likely to improve the performance.

To quantify how much of the pion energy is contained in one cluster, the fraction of energy contained
in the cluster with the highest energy (Emax/Eall) to the energy contained in all clusters can be used:

Emax
Eall

=
Ecluster,max

ΣclusterEcluster
(10)

Fig. 23 shows the leading cluster fraction distribution from for pions with beam momenta from 2 to
180 GeV. For high pion momenta the variations of the topological cluster parameters have no influence
on the energy distribution. In most of the events there is only one cluster.

For low pion momenta (Pbeam < 20 GeV) the fraction of events with leading cluster fraction below
one increases and the dependence on the topological cluster parameter becomes large41) .

For a topological cluster setting of S = 4, N = 1 and P = 0 the leading cluster contains in most cases
a large fraction of the pion energy. The leading cluster fraction peaks at 1 and the fraction of events in the
tails is smallest. It seems that the leading cluster fraction is very sensitive to the neighbour threshold. If,
for instance, S = 4, N = 2 and P = 0 is used, there are a factor of 2.5 less events in the peak at 1. Similar
conclusion can be drawn for the S = 3 setting, but a low seed threshold leads to more split clusters. This
can also be observed when changing the seed threshold for N = 2 and P = 0 from S = 6 to S = 4. A
higher seed threshold leads to more events which have all energy in one cluster.

Fig. 24 shows the mean and the relative root-mean-square (RMS/mean) leading cluster fraction as
a function of the beam energy for various settings of the topological cluster. The mean leading cluster

41)Values larger than 1 are possible, since the noise contribution becomes larger and some of clusters contain negative energy
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fraction decreases from 0.95 at 180 GeV to 0.87 at 20 GeV. This behaviour is almost independent of
the cluster settings. The leading cluster fraction shows a large variation with the cluster parameter for
Pbeam < 20 GeV. For S = 4, N = 1 and P = 0 it increases again to 0.98 at 2 GeV, while for S = 3, N = 3
and P = 0 is decreases down to 0.77. A similar behaviour is observed for the resolution.

The highest mean and the smallest RMS is obtained for the S = 4, N = 1 and P = 0 topological cluster
setting. The mean leading cluster fraction is 20% higher than for S = 4, N = 2 and P = 0. Lowering the
seed threshold to S = 3, N = 2 and P = 0 gives a similar good performance at high pion momenta, but
at 2 and 3 GeV more clusters are produced. For increasing seed thresholds the mean increases and the
RMS decreases: from 0.75 for S = 3, N = 2 and P = 0 to 0.91 for S = 6, N = 2 and P = 0. This effect is
most pronounced towards lower energy.
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Figure 22: Mean response (a) and resolution (b) for pions as a function of the beam momentum
for various settings of the perimeter threshold of the topological cluster algorithm. The neigh-
bour threshold is fixed to N = 2 and the seed threshold to S = 4. Only data and only statistical
uncertainties are shown.

8.2.3 Dependence of the Zero Signal Probability on the Parameters of the Topological Cluster
Algorithm

In some of the events, no signal is measured in the calorimeter although a long pion track has been
measured in the TRT. These are events where the pion undergoes a strong interaction at the end of the
TRT or in the cryostat. An example of such an event is shown in Fig. 8.

Since in certain cases the resulting secondary particles can be strongly deviated, only small energy
depositions can sometimes be measured close to the nominal beam direction. This effect can be quan-
tified by the number of events with no energy contained in a cluster in a cone of radius R = 0.3 around
the nominal beam direction to the total number of events. This ratio gives the probability to have a
measurable signal in the calorimeter around the beam axis. It is shown in Fig. 25a) for various settings
of the topological cluster algorithm. It strongly decreases towards higher beam momenta and is mainly
influenced by the seed threshold. For a seed threshold S = 6 or S = 5 the same results are found for N = 2
or N = 1. For a pion momentum of 2 GeV in 20% (10%) of the case no energy is measured, if S = 6
(S = 5).
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Figure 23: Distribution of the fraction of the energy contained in the cluster with the highest
energy with respect to the energy in all clusters. Shown are various settings of the topological
cluster algorithm. Only data and only statistical uncertainties are shown.
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Figure 24: Mean (a) and relative RMS (b) of the energy distribution contained in the cluster with
the highest energy with respect to the energy in all clusters as a function of the beam momentum
for various settings the topological cluster algorithm. Only data and only statistical uncertainties
are shown.

For S = 4 and N = 2 the probability to have no calorimeter signal is of the order 0.1%. A further
reduction by about a factor of 10 is obtained for S = 4 and N = 1. This means that for low seed thresholds
the influence of the neighbour threshold becomes important.

8.2.4 Topological Cluster Performance on Noise

The performance of the topological cluster algorithm on noise can be studied using randomly triggered
test-beam events. Fig. 25b) shows the sum of all clusters in the calorimeters for various topological
cluster settings. For all settings the mean reconstructed energy is compatible with zero. The topological
cluster algorithm does not introduce any bias on pure noise.

The width of the energy distribution due to noise is mainly influenced by the seed threshold. The
largest width is obtained for low thresholds. For high seed thresholds, such as S = 5 or S = 6, in most
cases no cluster is formed from noise.

8.2.5 Conclusion on Topological Cluster Thresholds

The thresholds for the topological cluster algorithm show a large influence on the pion signal, in partic-
ular for low pion momenta. The results of the parameter adjustment can be summarised as follows:

• A seed threshold of S = 4 is reasonable, a higher value would induce more events with no calorime-
ter signal and lead to a worse energy reconstruction performance. A lower threshold would induce
too many noise clusters.

• A neighbour threshold of N = 1 has certain advantages over a N = 2 threshold, i.e. most of the
events have only one cluster, it provides an increased signal at low pion momenta and a better
resolution at high pion momenta. However, the clusters can become very large.

• To include all perimeter cells, i.e. applying no perimeter threshold (P), leads to an increased pion
signal and to a better resolution.
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In conclusion, the ATLAS standard setting of S = 4, N = 2 and P = 0 is reasonable. Lowering the
neighbour threshold to N = 1 has certain advantages, but the cluster might become large which would
degrade the performance in ATLAS.
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Figure 25: a) Probability to measure no cluster in the calorimeter in a cone with radius R = 0.3 for
various settings of the topological cluster algorithm. b) Reconstructed energy distribution from all
topological clusters for various settings of the topological cluster algorithm for randomly triggered
events. Only data and only statistical uncertainties are shown.
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9 Mean Energy Response and Energy Resolution
In this section the response and the energy resolution are measured and the data are compared to the
Monte Carlo simulations. The energy is measured using all topological clusters in the calorimeters using
the standard thresholds S = 4, N = 2 and P = 0.

The data are not corrected for proton contamination. Instead, in the Monte Carlo simulation pions
and protons are mixed together according to the mean proton fraction as measured in the data.

In section 9.1 the response and resolution is measured for all pion events, i.e. the combined response
of the LAr and the TileCal is studied. The total energy distribution as well as the individual energy
distribution in the electromagnetic and hadronic calorimeters are presented. In addition, the mean energy
fraction contained in the electromagnetic calorimeter is studied.

In section 9.2 only events where the pion passes through the LAr calorimeter as a minimally ionising
particle are selected and the response and the resolution are measured.

9.1 Combined Response and Resolution of the LAr and the Tile Calorimeter
9.1.1 Combined Total Energy Distribution

The energy distribution measured in the LAr and the TileCal calorimeters for all beam momenta are
shown in Fig. 26a. Data are shown as closed circles, the Monte Carlo simulation for various physics lists
are shown as solid lines. The data are best described by the QGSP BERT physics list.

While for high pion momenta the energy distribution is approximately Gaussian towards low mo-
menta the distribution gets a bit skewed towards low values.

9.1.2 Combined Response

The mean response and the resolution as a function of the beam momentum is presented in Fig. 27. Data
are shown as closed circles, the Monte Carlo simulation for various physics lists are shown as lines. The
mean pion response relative to the beam momentum increases from 0.47 at 2 GeV to 0.75 at 180 GeV.
The relative resolution improves from about 60% at 2 GeV to about 10% at 180 GeV. The exact numerical
values together with the estimated uncertainties are given in Table 17.

Above beam momenta of 10 GeV the pion response increases logarithmically towards higher beam
momenta. This can be explained by an increasing energy fraction that is deposited electromagnetically.
Below 10 GeV the increase of the response is still approximately logarithmic but the slope is steeper.

The shape of the increase of the pion response with the pion momentum is also influenced by the
large relative energy losses in the dead material and the higher relative signal cut by the noise thresholds
as well as by the energy leaking out radially. Some of these effects have been discussed in sections 8.

The pion response in the data is best described by the QGSP BERT physics list (solid line). The
data are described within 5% in the VLE range and within 1% for higher momenta. The response for the
QGSP physics list is about 5−10% lower than the one measured in the data. The Fritiof model is about
2% too low at high pion momenta (Pbeam > 10 GeV), but a few per cent too high at low pion momenta.
As in the case of the QGSP model adding the Bertini cascade increases the response, which is in better
agreement with the data at high energy, but worse at low energies. At 5 and 9 GeV the FTFP BERT
model predicts a mean energy that is 10% higher than the one in the data.

Fig. 28a) shows a comparison of the pion response in the data with physics lists using alternative
models of the nucleon–nucleon cascades. The variants of the Bertini cascade give little changes in the
response. The QGSP model together with the binary cascade (QGSP BIC) is below the data by about
5− 10% for VLE data and in agreement with data at high pion momenta. The QGS BIC is in better
agreement with the data than the QGSP BIC at low momentum. The latter is in slightly better agreement

53



 (GeV)
tot

All topo clusters: E
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 40

0.1

0.2

0.3

0.4
0.5

0.6

0.7
0.8 = 2 GeVbeamP

 (GeV)
tot

All topo clusters: E
0 1 2 3 4 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7 = 3 GeVbeamP

 (GeV)
tot

All topo clusters: E
0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4
= 5 GeVbeamP

 (GeV)
tot

All topo clusters: E
0 2 4 6 8 10 120

0.05

0.1

0.15

0.2

0.25

0.3 = 9 GeVbeamP

 (GeV)
tot

All topo clusters: E
5 10 15 20 250

0.02

0.04
0.06

0.08
0.1

0.12

0.14
0.16
0.18

= 20 GeVbeamP

 (GeV)
tot

All topo clusters: E
10 20 30 40 50 60 700

0.01
0.02
0.03
0.04

0.05
0.06
0.07
0.08
0.09 = 50 GeVbeamP

 (GeV)
tot

All topo clusters: E
30 40 50 60 70 80 90 100 1100

0.01

0.02

0.03

0.04

0.05 = 100 GeVbeamP

 (GeV)
tot

All topo clusters: E
80 100 120 140 160 180 200 220 2400

0.01

0.02

0.03
= 180 GeVbeamP Data

QGSP_BERT
QGSP
FTFP
FTFP_BERT

Figure 26: Total energy distribution of pions for beam momenta of 2 - 180 GeV. Shown are data
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Figure 27: Mean energy (a) and resolution (b) for pions at beam momenta from 2 - 180 GeV.
Shown are data as closed points and Monte Carlo simulations as lines. Only statistical uncertain-
ties are shown.

be
am

/P
re

co
m

ea
n

E

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8 Data
QGSP_BERT
QGSP_BERT_HP
QGSP_BERT_NQE
QGSP_BERT_TRV
QGSP_BIC
QGS_BIC
FTF_BIC

 (GeV)beam        P1 10 210

M
C/

Da
ta

   

0.8

0.9

1

1.1
 5.0% ± 

m
ea

n
re

co
RM

S/
E

-110

Data
QGSP_BERT
QGSP_BERT_HP
QGSP_BERT_NQE
QGSP_BERT_TRV
QGSP_BIC
QGS_BIC
FTF_BIC

 (GeV)beamP1 10 210

M
C/

Da
ta

   

0.7
0.8
0.9

1
1.1

 10.0% ± 

a) b)

Figure 28: Mean energy (a) and resolution (b) for pions at beam momenta of 2 - 180 GeV. Shown
are data as closed points and Monte Carlo simulations showing variants in the nuclear cascade
models as lines. Only statistical uncertainties are shown.
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with the data. This means that including a pion nucleon cascade in the low–energetic range gives some
improvements. As in the case of the FTFP BERT physics list, FTF BIC predicts a response that is too
high by 5% to 10% with respect to the data.

9.1.3 Combined Resolution

The pion resolution quoted as the RMS divided by the mean energy is shown in Fig. 27b) and Fig. 28b).
It ranges from about 60% at low momenta to about 10% at high energy.

The Monte Carlo simulation predicts in general a better resolution than the one measured in the
data. The resolution in the simulation is better than about 10% in the VLE range and about 5% at
higher momenta. At high momenta adding the cascade models to the QGSP or FTFP models makes the
resolution narrower which is in worse agreement with the data.

However, the QGSP model gives a too broad resolution (by 5−10%) for pion momenta of 100 and
180 GeV. The QGSP BERT model predicts a resolution that is lower by 5−10% than in the data for all
pion momenta. The variants of the nuclear cascade models have only little influence on the resolution
(see Fig. 28b). The FTF BIC model is in a better agreement with the data than the FTFP BERT model.

9.1.4 Energy Distribution in the LAr Calorimeter

The energy distributions in the LAr calorimeter only are shown in Fig. 29. Data are shown as closed
circles, Monte Carlo simulations are overlayed as lines. At pion momenta of 2 and 3 GeV the distribution
peaks around 0.5 GeV roughly corresponding to the energy deposited by a minimally ionising particle,
along with a tail towards higher–energy depositions, corresponding to pions interacting hadronically in
the LAr calorimeter. For pions at higher momenta this tail develops to a distribution with an approximate
Gaussian shape peaking roughly at 40% of the total pion momentum and at the same time the number of
events with little energy deposits increases.

For high energy the Monte Carlo simulation based on the QGSP model deposits too much energy in
the LAr calorimeter, i.e. the shower starts earlier than in the data.

The Monte Carlo simulation describes the shape of the energy distribution sufficiently well. The
Fritiof model gives a better description of the large energy deposits in the LAr .

Only at 9 GeV both models, QGSP and FTFP, using the Bertini intra-nuclear cascade produce too
many events where the pions pass as minimally ionising particles through the LAr calorimeter and the
description of the energy distribution is adequate. Without the Bertini cascade the description of the total
energy distribution in the LAr is better.

9.1.5 Energy Distribution in the Tile Calorimeter

Fig. 30 shows the energy distribution in the TileCal, which is anti-correlated to the energy distribution
in the LAr. For low pion momenta the energy deposition in the TileCal are for most events rather small,
i.e. around the expected noise value. With increasing momentum more and more pions deposit most
of their energy in the TileCal. At high energy there is a double peak structure caused by events that
start to shower already in LAr as opposed to events that pass as minimally ionising particles through the
LAr calorimeter and deposit almost all their energy in the TileCal.

This behaviour is approximately modelled by the Monte Carlo simulations, but none of the models
gives a good description of the data. QGSP predicts energy distributions that are shifted towards lower
momenta and the amount of energy deposited in the TileCal for the events where the pion deposited most
of its energy in the TileCal is too low. The shower starts and ends too early. Adding the Bertini cascade
makes the showers longer and the data are better described, but the dip between the narrow high energy
peak and the wide low energy peak is in particular not well described.
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Figure 29: Energy distribution in the LAr calorimeter for pions with beam momenta of 2 to
180 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only statisti-
cal uncertainties are shown.

57



 (GeV)
Tile

All topo clusters: E
0 0.5 1 1.5 2

-110

1

10
= 2 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 0.5 1 1.5 2 2.5

-110

1

= 3 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 1 2 3 4 5

-110

1

= 5 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 2 4 6 8 10

-210

-110

1 = 9 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 5 10 15 20

-210

-110

= 20 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 10 20 30 40 50

-210

= 50 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 10 20 30 40 50 60 70 80 90

-210

= 100 GeVbeamP

 (GeV)
Tile

All topo clusters: E
0 20 40 60 80 100 120 140 160 180

-310

-210

= 180 GeVbeamP Data
QGSP_BERT
QGSP
FTFP
FTFP_BERT

Figure 30: Energy distribution in the TileCal for pions with beam momenta of 2 to 180 GeV.
Shown are data as closed points and Monte Carlo simulations as lines. Only statistical uncertain-
ties are shown.
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A similar trend is observed for the FTFP model. This is, however, less pronounced since the FTFP
model produces longer showers than the QGSP model. The FTFP BERT model describes well the peak
and the dip, but predicts a distribution that is shifted to large values for the pions that start to shower in
the LAr . The energy distribution of the events that deposit most of their energy in the TileCal is rather
well described. This is in agreement with the results obtained in the 2002 test-beam where only the
TileCal was exposed to a beam [15, 53].
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Figure 31: Mean energy fraction measured in the electromagnetic calorimeter with respect to the
total energy as a function of the beam momentum for pions from 2 to 180 GeV. Shown are data as
closed points and Monte Carlo simulations as lines. Only statistical uncertainties are shown.

9.1.6 Mean Energy Fraction in the Electromagnetic Calorimeter

The mean fraction of the energy deposited in the LAr calorimeter with respect to the total deposited
energy is shown in Fig. 31a). As the pion momentum increases relatively less energy is deposited in the
electromagnetic calorimeter. At 2 GeV the electromagnetic fraction is about 70% while at 180 GeV it is
about 40%. For pions with 2 GeV all models predict a higher energy fraction in the LAr calorimeter than
measured in the data. QGSP BERT and the FTFP BERT describe the data best. For 3 - 9 GeV pions
the prediction from QGSP BERT is a bit below the data, while FTFP BERT describes the data well. For
pions with momenta higher than 9 GeV QGSP BERT is above the data, while FTFP BERT is below. The
shower predicted by the QGSP BERT physics list is too short while the one predicted by FTFP BERT is
too long.

Without the Bertini cascade more energy is deposited in the LAr calorimeter in contrast to what
is found in the data for the QGSP model. Changing the limit of applicability for the Bertini cascade
(QGSP BERT TRV) improves the description of the point at 9 GeV, but has little influence for the other
pion momenta. The FTFP model is also too high at low pion momenta, but gives a good description at
high momenta.

The QGSP model together with the binary cascade (QGSP BIC) gives a similar description of the
data at high pion momenta, but a worse description for low pion momenta. As in the QGSP model the
energy in the LAr calorimeter is too high. The Fritiof model with the binary cascade (FTF BIC) gives a
reasonable description of the data (except for 2 GeV) and it is this model that leads to the best description
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of the data.

9.2 Tile Calorimeter Response Requiring Minimally Ionising Particles in LAr
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Figure 32: Total energy distribution in the TileCal for pions with beam momenta of 2 - 180 GeVfor
event where the pion passes as minimally ionising particle through the LAr calorimeter are se-
lected. Shown are data as closed points and Monte Carlo simulations as lines. Only statistical
uncertainties are shown.

To study the response of the TileCal to pions it is interesting to select events where pions deposit only
little energy in the LAr calorimeter. This allows for comparisons to previous test-beam measurements
where the TileCal alone was exposed to a beam. Furthermore, these data can be useful for understanding
the in-situ calorimeter calibration in ATLAS using isolated tracks from minimum bias events [56]42),

42)In such analyses the aim is to calibrate the hadronic response using momentum measurements from the tracking detector.
Therefore, events where the charged pion is accompanied with neutral pions have to be suppressed or very restrictive cuts have
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Figure 33: Mean energy for pions passing as minimally ionising particles through the
LAr calorimeter with beam momenta from 2 - 180 GeV. Shown are data as closed points and
Monte Carlo simulations as lines. Only statistical uncertainties are shown.

where the neutral pions that are produced together with the charged pions in a jet lead to purely electro-
magnetic energy deposits and are absorbed in the LAr calorimeter.

Pions passing as minimally ionising particles through the LAr calorimeter deposit only little energy.
To select such events the energy reconstruction method for muons is followed [15, 49]: the cell with
the highest energy in a small cone of R = 0.1 around the nominal beam impact point is selected and its
energy is added to the energy of the cell’s nearest neighbour in the φ -direction with the highest energy.
The sum of the energies of these two cells is called Emip in the following.

A minimally ionising pion is then defined by requiring Emip < 300 MeV in the first and the second
calorimeter compartment and Emip < 100 MeV in the third compartment.

9.2.1 Energy Distribution in TileCal

Fig. 32 shows the energy distribution in the TileCal for such events. As in the case of the inclusive sample
(see Fig. 26) for low pion momenta Pbeam ≥ 5 GeV there is still a large fraction of events where pions
loose very little or no energy in the TileCal. These are therefore pions that deposit little energy in both
calorimeters. The number of events depositing nearly no energy in TileCal decreases towards high pion
momenta. For pion momenta with Pbeam = 9 GeV the peak around the noise value almost disappears
and for Pbeam > 9 GeV an approximately Gaussian distribution with a peak around 70−80% of the pion
momentum is measured.

The Monte Carlo simulations are able to describe the data distribution. The best description is ob-
tained by the models using the Bertini cascade. The QGSP and the FTFP model predict an energy
distribution that is shifted towards smaller values.
to be applied such that only little energy is deposited in the LAr calorimeter.

61



9.2.2 Response in TileCal

Fig. 33 shows the mean pion response (a) and the resolution (b) as a function of the beam momentum.
At low pion momenta the response for pions passing as minimally ionising particles through the LAr is
much lower than for all pions and falls more steeply. However, for high pion momenta (Pbeam > 10 GeV)
the response is higher. This is a consequence of the deposited energy in LAr that is approximately
independent of the beam momentum of a minimally ionising particle and therefore relatively large for
low pion momenta. The higher response at high pion momenta is due to the smaller relative amount
of energy deposited in the dead material between the TileCal and the LAr. The mean response and the
resolution as a function of the beam momentum together with the uncertainty on the energy measurement
are summarised in Table 17.

The Monte Carlo models describe the pion response measured in the data within a few per cent for
pion momenta larger than 9 GeV. The QGSP and the FTFP models are below the data by about 5%.
However, the Monte Carlo models have problems to describe the data for low pion momenta. QGSP and
FTFP are lower by 50% at 2 GeV, but the agreement with data gets better towards higher momenta. For
5 and 9 GeV FTFP describes the data within 5% and QGSP within 20%.

Adding the Bertini cascade increases the response for both the QGSP and the FTFP model. For high
pion momenta the increase is a couple of per cent, while at low pion momenta the signal increases by
up to 20%. For 2 and 3 GeV this is in better agreement with the data (within 10% for QGSP BERT and
20% for FTFP BERT). As in the case of all pions the Fritiof model predicts a pion response for pion
momenta of 5 GeV and 9 GeV that is too high. At low pion momenta the description by QGSP BERT is
worse than in the combined case where the energy is measured in both calorimeters. The mean response
is about 10% too high. For high momenta pions the response is well described.

9.2.3 Resolution in TileCal

The pion resolution follows a similar trend then the response: for low pion momenta the resolution is
much worse than in the case of all pions, while for high pion momenta the resolution is better. This
behaviour can also largely be explained by the different influence of the dead material losses.

The resolution is described within 10% for high pion momenta above 10 GeV. Both the QGSP and
the FTFP models predict a resolution wider than the one in the data. Adding the Bertini cascade improves
the data description to within 5%.

The interpretation of these results is not clear. The good description of the TileCal in the case where
the pion passes as a minimally ionising particle through the LAr shows that the detector response and the
shower description are adequate. The worse resolution in the combined case is therefore either connected
to the energy deposited in the LAr calorimeter or in the dead material. The problem of the bad description
of the resolution in the inclusive case might well be connected to the early shower start and the different
amount of energy deposited in the dead material between the LAr and the TileCal.

For low pion momenta the resolution is badly described and the Monte Carlo models make very
different predictions: QGSP BERT and FTFP BERT are by 20−30% below the data for 3−9 GeV, but
agree for 2 GeV. QGSP gives a resolution close to the data for 5 and 9 GeV, but is 20% (40%) too high
for 3 (2) GeV. However, given the complex shape of the energy distribution for low pion momentum the
interpretation of these results is difficult.
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10 Energy Measurement Uncertainties
The uncertainty on the reconstructed pion energy is calculated taking the cell energy distribution for each
event into account. The following main uncertainties in the energy measurement are considered:

1. The absolute energy electromagnetic scale uncertainty in the LAr: 0.7% (see section 3.1.4)

2. The cell non-uniformity in the LAr: 0.4% (see section 3.1.4)

3. The absolute energy scale uncertainty in the TileCal: 1.0% (see section 3.2.4)

4. The tile-to-tile non-uniformity in the TileCal: 0.75% (see section 3.2.4)

5. The uncertainty due to the electronic calibration of the TileCal (see section 3.2.2)

6. The uncertainty due to the radial weights of the TileCal (see section 3.2.4 and Table 3)

7. The uncertainty due to the pion decay cut evaluated by using or not using the pion decay cut

The uncertainty on the absolute electromagnetic scale in the LAr and the TileCal is correlated among
all cells and therefore directly influence the pion energy. The uncertainty is calculated by scaling each
cell energy with the same factor.

The uncertainty from the TileCal non-uniformity is evaluated using pion beams impinging on differ-
ent locations on the calorimeter and correcting the measured pion energy for longitudinal leakage. This
non-uniformity is due to tile-to-tile and cell-to-cell differences. A more detailed discussion can be found
in ref. [15]. Since this uncertainty is uncorrelated among the cells, each cell is scaled by a factor and
the scaled cells are added in quadrature to obtain the pion energy. The pion energy uncertainty is then
obtained by varying the scale factor within the uncertainty up and down.

The uncertainty on the electronic calibration of the TileCal is also obtained on a cell-by-cell basis
assuming that the shape obtained for the low gain in ref. [16] is the same in high gain. The uncertainties
for each cell are added in quadrature.

At very low energies the data sample is contaminated by muons from pion decays. These events
have a much higher energy response and therefore can bias the measurement. They are removed by a
cut on the pion decay likelihood (see section 7.3.2) defined on the energy distribution in the calorimeter
compartments. Since the likelihood selection also removes some pion events a bias might be introduced.
To estimate this bias the pion response can be studied with and without the likelihood cut. This evaluation
represents an overestimation of the true effect.

The uncertainty on the beam momentum is about 0.7% and is discussed in section 2.2. The intro-
duced uncertainty on the mean pion response due to the removal of pion decays is 7% at 2 GeV and 3%
at 3 GeV and negligible for higher pion momenta.

The resulting uncertainties on the response and the resolution are listed in Table 17. The statistical
uncertainty is smaller than 1% for all pion momenta. The uncertainty on the energy scale affects the
combined pion response by about 0.9%. The uncertainty due to the calorimeter non-uniformity on the
pion response is about 0.3%. The uncertainty in the CIS calibration results to about 0.3%.

63



11 Longitudinal Shower Profiles
The longitudinal segmentation of the ATLAS barrel calorimeter in seven compartments can be used to
study the longitudinal shower development.

11.1 Definition
The longitudinal hadronic shower profile is here defined as the mean energy deposited in each calorime-
ter compartment divided by the width of the compartment as a function of the length the shower has
traversed in the calorimeter and by the total pion energy. This length is measured at the middle of each
compartment. The calorimeter length is expressed in units of nuclear interaction lenghts. The quoted
length includes the material in front of the calorimeter and the material between the calorimeters (see
Table 2). All mean energies per compartment are normalised to the total deposited energy.

11.2 Comparisons of Data and Monte Carlo Simulations
Fig. 34 shows the longitudinal pion shower profile for low pion momenta form 2 to 9 GeV and Fig. 35 for
high pion momenta of 20 - 180 GeV. The hadronic shower quickly rises and reaches a maximum after
about 1 λ and then exponentially falls off towards the end of the calorimeter. In the last compartment of
the TileCal, i.e. after about 8 λ , most of the pion energy is deposited and the shower ends. At low pion
momenta the shower rises more quickly than at high pion momenta. The shower penetrates deeper into
the calorimeter towards high pion momenta.

The Fritiof fragmentation leads to a shower that is longer than the one produced by the QGS frag-
mentation. This is in better agreement with the data. The first and second TileCal layer is described
within 10 %.

For QGSP the simulated pion showers are shorter than the ones in the data. The Fritiof fragmentation
leads to a shower that is longer than the one by QGS. This is in better agreement with the data. By adding
the Bertini intra-nuclear cascade the showers get longer. This is generally in better agreement with the
data, but produces showers that are too long in the case of the Fritiof fragmentation.

At high pion momenta (Pbeam > 10 GeV) the QGSP model predicts a shower response that is 20 -
50% lower than the one measured in the data. With the Bertini cascade the data are better described, but
the shower is still shorter than the one in the data. The data are reasonably well described by the Monte
Carlo simulation, only at the end of the shower the Monte Carlo simulation is lower by 10%.

The Fritiof model also produces showers that are shorter than in data for pion momenta of 20 and
50 GeV, but describes the data within 10% for 100 and 180 GeV. When adding the Bertini model to FTFP
the data are described for 20 and 50 GeV, but are too long for 100 and 180 GeV. The second layer of the
TileCal is 10−20 % higher than the one in the data. The problems of the Fritiof model are probably due
to the difficulties of describing the longitudinal proton shower profile correctly [57]. The Fritiof model
together with the binary cascade describes the data within 10%.

At very low pion momenta the start of the shower (i.e. the first 1− 2 λ ) is described by the models
within 10% per cent. However, at the end of the shower the QGSP as well as the FTFP models predicts
a response much lower than the data (50 - 80%). The shower development is therefore too short. Adding
the Bertini cascade gives a better description of the data at 2 and 3 GeV, but the response is still low at
the shower end (50% at 2 GeV). For pion momenta of 5 and 9 GeV the Bertini cascade also makes the
shower longer, but the shower gets too long. The deviation is 20% at 5 GeV, 40% at 9 GeV for QGSP
and 20% at 9 GeV for FTFP.

The Fritiof model with the binary cascade describes the data within 10− 20% at 5 and 9 GeV, but
has the same problems as the other models for lower pion momenta.
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At 9 GeV, adding the Bertini model decreases the response in the LAr (the shower starts later) and
increases drastically the response in the TileCal. While the QGSP model is 40% lower than the data in
the TileCal BC compartment, it is 10% too high for QGSP BERT. The Fritiof model describes the data
at 9 GeV within 10%. Only the last TileCal compartment is 40% too low. Adding the Bertini cascade
increases the response at the end of the shower and as a result it is 10 - 20% too high.

The inclusion of the quasi-elastic scattering has no influence for Pbeam < 10 GeV, but makes the
shower longer for higher pion momenta. For instance, at 180 GeV the shower is 20−40% below the data
without the quasi-elastic scattering (QGSP BERT NQE), but only 5−10% lower with (QGSP BERT).

In conclusion, the addition of the Bertini model makes the shower longer. This is generally in better
agreement with the data, but the response towards the shower end remains too low. High pion mo-
menta are generally better described than low pion momenta. The agreement for high pion momenta
(Pbeam > 10 GeV) is within 10-20% for all calorimeter compartments, while for low pion momenta large
discrepancies are seen.
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Figure 34: Relative mean energy per calorimeter compartment as a function of the material length
the hadronic shower has traversed measured in nuclear interaction lengths for beam momenta of
2, 3, 5 and 9 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only
statistical uncertainties are shown.
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Figure 35: Relative mean energy per calorimeter compartment as a function of the material length
the hadronic shower has traversed measured in nuclear interaction lengths for beam momenta of
20, 50, 100 and 180 GeV. Shown are data as closed points and Monte Carlo simulations as lines.
Only statistical uncertainties are shown.
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12 Lateral Shower Profile
The fine granularity of the ATLAS barrel calorimeter and, in particular, of the LAr calorimeter allows the
lateral hadronic shower profile to be studied in great detail. The lateral shower development is measured
using the energy flow in the η-direction, since the granularity is finer than the one in the φ -direction.

12.1 Mean Lateral Shower Profile per Calorimeter Compartment
12.1.1 Definition

For each event first the mean η position in each calorimeter compartment is determined:

〈η〉 =
ΣiηiEi
ΣiEi

, (11)

where the sum runs over all cells (in the particular calorimeter compartment) that are included in topolog-
ical clusters. The variable Ei denotes the energy deposition in each compartment cell and ηi corresponds
to the position of the cell centre.

The mean lateral hadronic shower profile for each calorimeter compartment is then measured as:

1
E

dE
dηbin

=
1

ΣevΣi Ei

ΣevΣiEi (ηi −〈η〉)
ηbin

, (12)

where the first sum runs over all events and the second one over all cells in a given compartment and ηbin
is the cell granularity corresponding to the bin width in the η-direction.

12.1.2 Dependence on the Shower Depth

The lateral shower profile for pions with a momentum of 5 GeV is shown in Fig. 36a) and for pions
with a momentum of 100 GeV in Fig. 36b). The results from the first and second compartment in the
LAr calorimeter and the first and second compartment in the TileCal are overlayed. Only data are shown.
The varying granularity of the shower profiles corresponds to the varying calorimeter granularity.

At the beginning the shower is well centred around the shower axis. As the shower develops the
lateral energy profile becomes wider. It is interesting that for 100 GeV pions the lateral shower profile
is wider in the first than in the second compartment: this might indicate an increased back-scattering
contribution.

As already observed in the case of electrons [3, 4], the lateral shower profile is wider in the positive
than in the negative η-direction. This is probably due to the calorimeter geometry that is not fully
projective.

12.1.3 Dependence on the Pion Momentum

Fig. 37 shows the dependence of the lateral shower profiles on the pion momentum for the first and second
compartments in the LAr and TileCal calorimeters. The shower becomes wider for decreasing pion
momenta. This is partly caused by the increased electromagnetic energy fraction at high pion momenta
that favours energy deposits near the shower axis. It also indicates the increased role of neutrons at low
energies.

Only the first LAr compartment exhibits a different behaviour. There the shower is narrowest for
pions with 5 GeV and widest for pions with 9 GeV, while the lateral profiles at 50 GeV and 180 GeV lie
in between.
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Figure 36: Mean lateral shower profile in the η-direction. Shown are results for various calorime-
ter compartments for a 5 (a) and a 100 GeV (b) pion beam. Only data and statistical uncertainties
are shown.
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Figure 37: Mean lateral shower profile in the LAr strip (a), the LAr middle (b), the TileCal front
(c) and the TileCal middle compartment (d) in the η-direction for pions with beam momenta at 5,
9, 50 and 180 GeV. Only data and statistical uncertainties are shown.
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12.1.4 Comparison of Data and Monte Carlo Simulations

Fig. 38 and Fig. 39 show a comparison of the data with Monte Carlo simulations for the LAr (a,c) and
TileCal (b,d) middle compartment for pions with momenta of 5 GeV (a,b) and 100 GeV (c,d). The Monte
Carlo simulation describes the data. The lateral profile at the beginning of the shower is well described
by all models. Only at the end of the shower development the lateral shower profile in the Monte Carlo
simulation is narrower than the one in the data (see Fig. 38b and d). For pions at low and at high momenta
adding the Bertini intra-nuclear cascade to either the QGSP or the FTF model makes the shower wider,
but not as wide as measured in the data. The Bertini and the binary cascade give comparable results.

The increase of the energy deposit far from the shower axis is probably due to the increased
production of neutrons when adding the Bertini cascade. It is therefore interesting to note that the
QGSP BERT HP and QGSP BIC HP give no improved description of the data (see Fig. 39). For the
lateral shower profile in the middle compartment of the TileCal the energy deposits are not increased far
away from the shower axis. However, in the middle compartment of the LAr calorimeter more energy
is measured in the lateral tail of the shower, but for low and high pion momenta this is not in agreement
with the data (see Fig. 39 a,c), since the Monte Carlo simulation is too high.

Once can deduce that the shower development in the tails far away from the shower axis is not so
much influenced by neutrons at thermal energies, but rather by neutrons in the nuclear regime. The
overshoot in the beginning of the showering is probably due to an increased back-scattering for which
low energetic neutrons play a more important role.
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Figure 38: Mean lateral shower profile in the η-direction. Shown are results for the LAr (a,c)
and TileCal (b,d) middle compartments of a 5 (a,b) GeV and a 100 GeV (c,d) pion beam. Data
are shown as closed circles, Monte Carlo simulations are overlayed as lines. Only statistical
uncertainties are shown.
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Figure 39: Mean lateral shower profile in the η-direction. Shown are results for the LAr (a,c) and
TileCal (b,d) middle compartments for a 5 (a,b) and a 100 GeV (c,d) pion beam. Data are shown
as closed circles, Monte Carlo simulations are overlayed as lines. Only statistical uncertainties are
shown.
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12.2 Energy Fraction in a Narrow Cone
The radial extension can also be studied by summing all the energy in a narrow cone around the shower
axis and dividing this quantity by the total energy in a larger cone:

Ecore = Σcells with dη<0.1 Ecell/Σcells with dη<0.3 Ecell, (13)

where dη = ηcell −ηnom and ηnom is the nominal beam impact position. All cells in topological clusters
are used.

The Ecore observable is better suited to study event-by-event fluctuations than the mean radial shower
profiles. Moreover, this observable depends less on the correlation of the longitudinal and lateral shower
development, since the sum over the cell energies extends over all calorimeter compartments.

The distribution of Ecore is shown in Fig. 40 for data and Monte Carlo simulations for pion momenta
of 2−180 GeV. For all pion momenta there is a clear peak at 0.8−0.85 indicating that a large fraction
of the pion energy is deposited in the narrow cone around the shower axis. The position of this peak
increases from 20 to 180 GeV, i.e. the shower becomes narrower towards larger pion momenta.

However, at 9 GeV the peak is around 0.9 and increases as the energy decreases such that the peak
is around 1 at 2 GeV43). Thus, for most of the events the shower gets narrower towards very low pion
momenta. However, at same time as many events get narrower there is also an increasingly large fraction
of events where the energy depositions in the narrow cone become low. It seems that the fluctuations in
the lateral energy deposits become larger at low energy.

It is also interesting to note that a certain fraction of events deposit no energy near the shower axis
(Ecore = 0). The fraction of such events increases as the energy decreases. In most of these events all
the energy is deposited outside the narrow cone. Their energy is uniformly distributed in η . It is likely
that these events are caused by strong interactions before the calorimeter (and after the TRT) where the
secondary particles produced in the inelastic collisions have been scattered under large angles. Events
where not energy is deposited int he calorimeter have been discussed in section 8.2.4. The evens are the
tails of the events with no energy close to the nominal beam axis.

Fig. 41 shows the mean energy fraction in the narrow cone as a function of the beam energy. At
2 GeV Ecore is approximately 0.8 and then decreases to 0.75 at 9 GeV and then increases again with
increasing energy up to 0.85.

The QGSP model produces for all pion momenta showers that are too narrow. For high pion momenta
the peak is shifted to higher values and for low pion momenta the large tail at low Ecore is too small. The
mean Ecore is about 5−10% too high. The Fritiof model makes the same predictions for Pbeam < 10 GeV,
but produces showers that are a bit wider for high pion momenta. The mean Ecore is about 3− 5% too
high.

Adding the Bertini cascade makes the shower wider for both the QGSP and the Fritiof model. The
Ecore distribution is well described by these models. The mean Ecore is described within 2%. Only at
9 GeV the QGSP BERT models produces too many events for very low Ecore values and therefore also
the mean Ecore is a bit low. The FTFP BERT describes well the data well at 9 GeV.

The variants of the Bertini cascade do not change the radial shower extension. Only at 9 GeV the
QGSP BERT TRV model describes the data better. The QGSP model with the binary case produces
showers that are laterally too narrow. The mean Ecore is 5− 10% too high. The Fritiof model together
with the binary cascade produces showers that are too wider. The mean Ecore is 3− 6% lower than the
one in the data for Pbeam < 10 GeV, but describes the data for high pion momenta.

43)Values above 1 are possible, since at low energies the contribution from negative energies becomes sizable.
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Figure 40: Distribution of the energy fraction of the shower core to the total energy (Ecore) for
pions with beam momenta from 2− 180 GeV. Shown are data as closed points and Monte Carlo
simulations as lines. Only statistical uncertainties are shown.
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Figure 41: Mean energy fraction of the shower core to the total energy Ecore for pions with beam
momenta from 2− 180 GeV. Shown are data as closed points and Monte Carlo simulations as
lines. Only statistical uncertainties are shown.

13 Topological Cluster Moments
Thanks to the fine granularity of the ATLAS barrel calorimeter the shower topology can be well mea-
sured. It is convenient to describe the shower topology by the so-called cluster moments44). For each
topological cluster the topology of the energy distribution in the cells belonging to the cluster can be
characterised by one well define property.

The cluster moments describe the lateral and longitudinal extension of the shower and the energy
density. Examples are the mean shower depth along the shower axis, the shower width along and per-
pendicular to the shower axis, the energy fraction per calorimeter compartment or the energy fraction in
the cell with the maximal energy or the one closest to the shower axis in each calorimeter compartment.
The exact definition of the cluster moments is given in section 13.1. More details can be found in [21].

In ATLAS cluster moments are used within the “local hadron calibration” scheme [21]. This calibra-
tion concept foresees to apply energy corrections based on the topology of the energy distribution in a
cluster. These corrections are derived from Monte Carlo simulations. Cluster moments serve to identify
clusters where all the energy has been deposited electromagnetically (like from neutral pions) and to
calculate the corrections of energy deposits outside the calorimeter (“dead material corrections”)45) or
not included in any topological clusters (“out-of-cluster corrections”).

Cluster moments can also be exploited for particle identification in ATLAS. They form a basis to
define jet moments that can be used to select and calibrate jets. One possible future application is the
recognition of clusters from low energy hadrons produced in an additional collision not associated to the
hard scattering.

In the test-beam the quality of the Monte Carlo simulation to describe the shower topology can be
assessed in a clean environment with one single pion impinging on the calorimeter. Cluster moments

44)Some of the “cluster moments” defined in the following are not “moments” in the strict mathematical sense. A better name
would be “cluster properties”. Here we adopt the ATLAS naming convention.

45)In ATLAS, dead material corrections are mainly based on the energy distribution in the calorimeter compartments. They
have already been discussed in section 11.
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that are described by Monte Carlo simulations can be considered to be used in ATLAS, while cluster
moments that are not well described should not be used for the analysis of ATLAS data.

Cluster moments are also a powerful tool to assess the Monte Carlo models in a comprehensive way.
They might therefore facilitate insights in the deficiencies of the present Monte Carlo simulations. There-
fore in section 13.2 detailed comparisons of the full plethora of physics lists to the data are presented.

13.1 Definition of Cluster Moments
In the following the cluster moments for which comparisons of data and Monte Carlo simulations have
been carried out are defined:

〈xn〉 =
1

Enorm
· ∑
{i |Ei>0}

Ei xn with the normalisation Enorm = ∑
{i |Ei>0}

Ei, (14)

where Ei is the reconstructed energy in cell i and n is the degree of the moment and x the observable.
The moment is calculated with the constituent cells of the cluster. Only cells with a positive cell energy
enter the computation of the moments.

Some of the moments refer to the shower axis which can be calculated by a principal component
analysis of the energy weighted spatial correlation with respect to the centre of the cluster constituent
cells. Only cells with positive energy are used:

Cxx =
1
w ∑

{i |Ei>0}
E2

i (xi −〈x〉)2, (15)

Cxy =
1
w ∑

{i |Ei>0}
E2

i (xi −〈x〉)(yi −〈y〉), (16)

where the normalisation constant is calculated with:

w = ∑
{i |Ei>0}

E2
i . (17)

The other components Cxz, Cyy, Cyz, Czz are calculated according to Cxx and Cxy and can be combined in
the symmetric matrix:

C =





Cxx Cxy Cxz
Cxy Cyy Cyz
Cxz Cyz Czz



 . (18)

With ~i being the vector from the interaction point (IP) to the barycentre of the cluster and ~e0,1,2 the
eigenvectors of C, the shower axis~s is given by:

~s =~e0,1,2 with smallest 6 (~i,~e0,1,2), if 6 (~i,~e0,1,2) ≤ 30◦
~i, if 6 (~i,~e0,1,2) > 30◦ (19)

With the shower centre ~c and the shower axis ~s the distance of a cell i to the cluster centre along the
shower axis:

λi = (~xi −~c) ·~s, (20)

and the radial distance of a cell i to the shower axis:

ri = |(~xi −~c)×~s | (21)

can be defined.
The following moments are calculated in addition to~c:
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• 〈r2〉: second moment in r, the lateral shower width

• 〈λ 2〉: second moment in λ , the longitudinal shower width

• 〈ρ〉: first moment in energy density ρ = E/V , with V being the cell volume

• 〈ρ2〉: second moment in energy density

and several quantities to estimate shower properties are computed:

• λcentre: distance of the shower centre from the calorimeter front face measured along the shower
axis

• fmax: energy fraction in the most energetic cell with respect to the cluster energy

• fcore: sum of the energy fractions in the most energetic cells per compartment with respect to the
cluster energy

A illustration of the cluster moment is shown in Fig. 42.

Figure 42: Mean energy deposition of a hadronic shower in the ATLAS calorimeter in the lateral
and longitudinal direction. The longitudinal shower axis is along the z-axis, the radial shower
devolops along the r-axis. The collisions take places in the origin of the coordinate system. For
illustrative purposes an interpretation of the cluster moments is indicated.

For all cluster moments an energy weighted average over all topological clusters with a cluster mean
pseudo-rapidity46) |ηcl −ηnom| < 0.3 is used.

46)Calculated as cluster moment according to eq. 14.
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13.2 Data Monte Carlo Comparisons of Topological Cluster Moments
13.2.1 Cell Energy Fractions

1 10 210

m
ax

 f
cl∑ 

cl
M

ea
n 

1/
N

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44 Data
QGSP_BERT
QGSP
FTFP
FTFP_BERT

 (GeV)beam        P1 10 210

M
C/

Da
ta

   

0.8

0.9

1

1.1
 5.0% ± 

1 10 210

co
re

 f
cl∑ 

cl
M

ea
n 

1/
N

0.4

0.45

0.5

0.55

0.6

0.65
Data
QGSP_BERT
QGSP
FTFP
FTFP_BERT

 (GeV)beam        P1 10 210

M
C/

Da
ta

   

0.8

0.9

1

1.1
 5.0% ± 

a) b)

Figure 43: Mean energy fraction of the cell with the highest energy with fmax (a) and with the sum
of all cells close to the shower axis fcore (b) with respect to the cluster energy as a function of the
beam momentum for pions with beam momenta of 2 - 180 GeV. Shown are data as closed points
and Monte Carlo simulations as lines. Only statistical uncertainties are shown.

Fig. 43a) shows the mean fraction of the energy in the cell with the maximal energy with respect to
the cluster energy 〈 fmax〉 as a function of the pion momentum. At low pion momenta on average about
32% of the pion energy is contained in one cell. Towards higher pion momenta a slow increase up to
about 36% for pions with 180 GeV is observed. The Monte Carlo simulations describe the data within
10%. The QGSP and the FTFP model give a similar prediction. For both the QGSP and the FTFP model
adding the Bertini cascade gives a similar results. This means that this observable is mainly influence by
the nuclear cascade and not by the fragmentation.

Without the Bertini cascade the mean fmax is about 10% too high for large pion momenta, but is
about 10% too low for small pion momenta. For pion momenta with Pbeam > 9 GeV the Bertini cascade
decreases 〈 fmax〉. However, for 5 and 9 GeV 〈 fmax〉 is increased. This is in better agreement with the
data for Pbeam > 9 GeV where the Bertini cascade makes the shower wider or narrower. For 2 GeV and
3 GeV adding the Bertini cascade has no influence on the data.

Fig. 43b) shows the mean fraction of the energy contained in the cells closest to the shower axis in
each calorimeter compartment with respect to the total energy 〈 fcore〉. At low pion momenta about 45%
of the energy is contained in the core cells. Towards higher pion momenta 〈 fcore〉 rises up to 60% for
180 GeV pions. This means that the shower gets more collimated towards high beam momenta, but one
should also consider that the shower penetrates deeper for high pion momenta where the calorimeter
granularity becomes coarser. The Monte Carlo simulations behave similarly as for 〈 fmax〉. However,
this time the QGSP model describes the data better than the Fritiof model. For high pion momenta, the
Fritiof physics lists are 10% above the 〈 fcore〉 of the data and the QGSP physics lists only 5%. Adding
the Bertini cascade decreases 〈 fcore〉 for pion momenta above 10 GeV. The QGSP BERT physics list
describes the data within 5%. The description of the FTFP BERT is a bit worse. At low pion momenta
(Pbeam ≤ 5 GeV) the data are described within 5%. Again, for 5 and 9 GeV adding the Bertini increases

77



fcore for QGSP.
Fig. 52 shows the fcore distribution. For pion energies above 20 GeV there is a small peak at high

fractions and a broader one for low fractions. The second peak is due to events that deposit their energy
mostly in TileCal , where the cell granularity is much coarser. The description of the small peak is good,
if the Bertini cascade is added to either the FTFP or the QGSP model. Without the Bertini cascade the
small peak is predicted to be close to one. However, the wide peak at smaller fractions is not well de-
scribed by any of the models. The binary cascade does not lead to an improvement of the data description
neither for the low nor for the large peak.

It seems that both energy fractions, fmax and fcore, are influenced by the modelling of the low ener-
getic nucleons. The fragmentation seems to play a smaller role.

13.2.2 Longitudinal Shower Depth and Length
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Figure 44: Mean shower depth λcentre (a) and shower width 〈λ 2〉 (b) for pions with beam momenta
from 2 - 180 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only
statistical uncertainties are shown.

The mean shower depth λcentre and the mean shower length 〈λ 2〉 (along the shower axis) are shown
in Fig. 44a) and b). The mean shower depth and the shower width increase logarithmically from low to
high pion momenta. The QGSP physics list predicts showers that penetrate less in the calorimeter than
the showers measured in the data. The mean λcentre is 10% lower than in the data for high pion momenta
within −10% to −30% lower for low pion momenta.

Adding the Bertini cascade increases the mean shower depth by a few per cent at high pion momenta
and by 20% at low pion momenta. This is in better agreement with the data. However, the λcentre is
still smaller than the one in the data for most pion momenta. The QGSP BERT physics lists describes
the mean shower depth in the data within 5% for pions with momenta above 10 GeV, but the predicted
shower penetration is less than in the data (at high pion momenta −3%). At 9 GeV it predicts that the
shower penetrates deeper than in the data (+15%). For lower momenta the predicted shower penentrates
less than in the data. For 2 GeV the mean shower depth obtained with QGSP BERT is 10% lower than
in the data.

The shower predicted by the Fritiof model is longer than the one predicted by the QGSP model. It is
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Figure 45: Mean shower depth λcentre (a) and shower length 〈λ 2〉 (b) for pions with beam momenta
of 2 - 180 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only
statistical uncertainties are shown.

in better agreement with the data. The FTFP physics list describes the data well at high pion momenta,
but also has problems at low pion momenta. Again, adding the Bertini cascade makes the shower longer.
This is at high pion momenta in worse agreement with the data (+5%), but at low pion momenta in better
agreement (±8%).

Fig. 45 shows the same observables for other variants of the Monte Carlo simulation. For high pion
momenta, adding the high precision neutron physics on top of QGSP BERT has no effect. Changing
the region of transition between the Bertini and the LEP model (QGSP BERT TRV) makes the shower
a bit shorter in worse agreement with data. The QGSP BERT NQE physics list also predicts too short
showers. This shows that the quasi-elastic process makes the shower longer (from −4% in QGSP BERT
to −7% QGSP BERT NQE). For low pion momenta the variants of the Bertini physics list have no
influence. Only at 9 GeV it is in better agreement with the data.

The QGSP model with the binary cascade predicts a 〈λcentre〉 that is 5% lower than the one in the
data at large pion momenta and is as QGSP much too low for low pion momenta (−5%− 20%). The
FTF BIC model describes the data within 5% down to pion momenta of 5 GeV. It produces showers that
are a bit longer than the ones in the data. Only for 2 GeV the 〈λcentre〉 is 10% lower to the data. The
FTF BIC describes the data best.

13.2.3 Lateral Shower Length

The second moment of the lateral shower extension 〈r2〉 (shower length) is shown in Fig. 46. The shower
length increases exponentially from 2 to 20 GeV and then decreases towards 180 GeV where it reaches a
similar level to the 3 GeV point.

None of the Monte Carlo models are able to well describe the shower length. The QGSP and the
FTFP models are 30 - 60 % below the data. The FTFP model describes the data a bit better than the
QGSP model. Adding the Bertini cascade increases the shower length and improves the description of
the data. For low pion momenta the QGSP BERT and the FTFP BERT model describe the data within
±5%, except at 2 GeV, where they are 15% below the data. For high pion momenta the QGSP BERT
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model is about 15% below the data, while the FTFP BERT is 5% below the data.
The binary cascade leads also to an increase of the amount of energy deposited far away from the

shower axis. However, this increase is less that the one obtained with the Bertini cascade, and the
agreement with the data is worse. No significant difference is found between QGSP BIC and QGS BIC.
This means that pion induced nuclear cascades play a minor role for the lateral shower extension, while
the nuclear cascade induced by nucleon (proton or neutrons) have a significant influence.

The variants of the Bertini cascades do not alter the description of the lateral shower extension. Also
the inclusion of the quasi-elastic scattering process does not influence the lateral shower development.

In conclusion, the data are not described by any of the models. The lateral shower development is
better described by the Fritiof fragmentation model than by the QGSP model. The shower length is less
influenced by the fragmentation, but rather by nuclear cascades.
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Figure 46: Mean second radial moment 〈r2〉 (shower length) for pions with beam momenta of 2 -
180 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only statistical
uncertainties are shown.

13.2.4 Energy Density

The first and second energy density moments are shown in Fig. 47a) and b). The first moment is about
the same for 2 - 3 GeV and then strongly increases towards higher energies.

The Fritiof model describes the data well down to 50 GeV within 3%. At low energy it is about 10%
too high. The QGSP model predicts an energy density that is much higher than the one in the data. The
discrepancy to the data rise from +10% at low pion momenta to up to +50% at P = 180 GeV.

Adding the Bertini cascade decreases the energy density for both QGSP and FTFP. For the QGSP
model the decrease is not enough at high pion momenta (+20%) and too much for low pion momenta
(−10%). The FTFP BERT physics lists describes the data best, i.e. within ±5% for Pbeam > 20 GeV and
within ±10% from 5 - 20 GeV.

The variants of the Bertini model have no influence. The QGSP model with the binary cascade gives
a good description of the data for low pion momenta (+5%), but also fails at high pion momenta (+25%).
The FTFP model together with the binary cascade describes the data well for high pion momenta (±5%),
but gives a worse description at small pion momenta.

80



The energy density seems to be more influenced by the fragmentation model than by the intra-nuclear
cascade models. At pion momenta below 5 GeV the LEP model is in better agreement than the Bertini
model that is 10 - 20% below the data. The second energy density moments are also largely influenced
by the fragmentation model. The Fritiof model describes the data best. The 〈ρ 2〉 is about 10% above
the data for Pbeam > 20 GeV and above 20% below. The QGSP physics list is well above the data (30 -
100 %). The discrepancy increases towards higher pion momenta. The Bertini cascade decreases 〈ρ 2〉 a
bit which is in a bit better agreement with the data for high pion momenta, but not for low pion momenta.
For 2 and 3 GeV the Bertini model is 45% and 30% below the data.

The variants of the Bertini cascade have little influence. The QGSP model with the binary cascade
is 10% higher than the data at low pion momenta, but can not describe the data at high pion momenta.
Here the QGS BIC model is in better agreement than the QGSP BIC model. The FTFP model with the
binary is 10% higher than the data at high pion momenta, but below 5 GeV it increasingly falls below the
data and is 50% too low at 2 GeV.
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Figure 47: Mean first 〈ρ〉 (a) and second 〈ρ 2〉 (b) energy density moment for pions with beam
momenta of 2 - 180 GeV. Shown are data as closed points and Monte Carlo simulations as lines.
Only statistical uncertainties are shown.
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longitudinal radial
physics list λcentre 〈λ 2〉 〈r2〉

VLE HE VLE HE VLE HE
QGSP −15% −10% −15% −10% −25% −40%

QGSP BERT ±10% −4% ±20% ±10% ±5% −10%
QGSP BERT NQE ±10% −7% ±20% ±10% ±5% −10%
QGSP BERT TRV ±10% −5% ±20% ±8% ±5% −15%
QGSP BERT HP ±10% −4% ±20% ±10% ±5% −10%

QGSP BIC −15% −6% ±20% ±5% −20% −20%
QGS BIC −15% −6% ±20% ±5% −20% −20%

FTFP −15% ±3% ±15% +5% −20% −30%
FTFP BERT ±8% +5% +20% +10% ±5% −5%
FTFP BIC ±15% +4% ±20% +10% ±5% −5%

Table 13: Summary of the comparison of the Geant4 Monte Carlo simulations to data. Compared
are various physics lists to the cluster moments describing the longitudinal and lateral shower
development. Indicated are typical upwards (+) or downwards (−) fluctuations in per cent.

energy density energy fraction
physics list 〈ρ〉 〈ρ2〉 fcore fmax

VLE HE VLE HE VLE HE VLE HE
QGSP +10% +30% +15% +50% −10% +5% ±10% +10%

QGSP BERT −10% +25% −20% +50% ±10% +3% ±10% +5%
QGSP BERT NQE −10% +25% ±30% +50% ±10% ±3% ±10% +2%
QGSP BERT TRV −10% +25% ±30% +50% ±10% ±3% ±10% +5%
QGSP BERT HP −10% +25% ±30% +50% ±10% ±3% ±10% +5%

QGSP BIC +5% +25% +10% +50% −10% ±5% ±10% +10%
QGS BIC +5% +25% +5% +50% −10% ±3% −10% +10%

FTFP +10% +5% +15% +10% ±10% +10% ±10% ±10%
FTFP BERT −10% ±3% −20% +10% ±10% +5% ±10% ±5%
FTFP BIC −10% ±5% −30% +10% ±10% ±3% −10% ±2%

Table 14: Summary of the comparison of the Geant4 Monte Carlo simulations to data. Compared
are various physics lists to the cluster moments describing the longitudinal and lateral shower
development. Indicated are typical upwards (+) or downwards (−) fluctuations in per cent.
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14 Simulation Results from Fine Momentum Scan
In the previous sections the description of the data by the Monte Carlo simulation has been discussed. To
take the changing beam composition for the various beam momenta into account the Monte Carlo sim-
ulation have been compared to samples of pion and protons that were mixed according to the measured
beam composition.

In this section the matching of the Bertini cascade model, the LEP model and the QGSP model in
the QGSP BERT physics list is addressed by using a fine momenta scan from 1 to 230 GeV. Only pions
are simulated.
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Figure 48: Mean energy and resolution for all topological clusters as a function of the beam energy.
The results are obtained using Geant4 Monte Carlo simulations for pions using the QGSP BERT
physics lists.

The pion response and resolution as a function of the beam momenta is shown in Fig. 48. In the
transition region between the Bertini cascade and the LEP model a unphysical peak is observed. The
response from the Bertini cascade is higher than the one from the LEP model for similar beam momenta.
The resolution is higher in the Bertini than in the LEP model.

At 25 GeV which is the transition region of the LEP and the QGSP model a unphysical kink is
observed for both the response and the resolution. The resolution does not exhibit the expected energy
behaviour falling with 1/

√
Pbeam .

Similar problems are observed for the shower depth and the fraction of the energy in the electroma-
gentic to the total energy (see Fig. 49). In the low momentum range below Pbeam < 10 GeV the shower
penetrates deeper and is laterally wider than above 10 GeV. The momentum dependence suggest that
there are significant uncertainties between 9 and 30 GeV.

Also the first and second moment of the energy density exhibit a unphysical behaviour in the transi-
tion region between the models. This is shown in Fig. 50.
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Figure 49: Mean longitudinal barycenter, energy fraction in the LAr calorimeter for all topological
clusters, mean second moment of the radial shower extension (shower width) and enery fraction
in all cells near to the shower core for all topological clusters as a function of the beam energy.
The results are obtained from Geant4 Monte Carlo simulations for pions using the QGSP BERT
physics list.
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function of the beam energy. The results are obtained from Geant4 Monte Carlo simulations for
pions using the QGSP BERT physics list.

15 Summary of the Monte Carlo to Data Comparisons
The comparisons of the Monte Carlo simulations to the data are summarized in Table 15 and Table 16.
Table 15 shows the performance of each studied physics lists in terms of response, resolution and the
longitudinal and lateral shower extension. The low and high pion momentum range is given separately.
The performance numbers refer to mean rough deviations evaluated by eye. Table 16 gives a concise
overview how the Monte Carlo simulation describes the data for each physics list. The comparison is
done only in a qualitative way.

The main conclusion from the comprehensive data to Monte Carlo simulations comparisons pre-
sented in the previous sections can be summarised as follows:

• The pions with momenta below 10 GeV are worse described than the pions at higher momenta

• The resolution is too narrow in the Monte Carlo simulation compared to data for most physics
lists. Only QGSP gives a worse resolution than in data.

• Adding the nuclear cascade models increases the response and brings the simulation in better
agreement with the data. The increase is smaller for the binary cascade than for the Bertini cascade.
For the QGSP BERT physics list the response is described within 1% for high pion momenta and
within 3% for low pion momenta.

• The longitudinal shower development is largely influcenced by the fragmentation model. The
Fritiof model produces hadronic showers that are longer than the ones in the quark gluon string
model. The Fritiof model is in better agreement with the data. The showers are a bit longer than
the ones in the data. For the quark gluon string model the shower starts and ends too early.

• Adding the nuclear cascade models makes the shower longer, and in better agreement with the
data in case of the quark gluon string fragmentation model, while in worse agreement in case of
the Fritiof model. The Bertini nuclear cascade produces longer showers than the binary cascade,
but the showers are still shorter than the ones in the data.
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• The radial extension of the shower is not well reproduced by any of the simulations. The data are
wider than the Monte Carlo simulations. The radial extension of the shower is only little influenced
by the fragmentation models.

• The shower get wider with the nuclear cascade models. The simulation using the Bertini cascade
are in better agreement with the data than the ones using the binary cascades.

• Quasi-elastic scattering make the shower longer. This improves the description of the data. The
radial extension is not influcenced.

• The detailed tracking of neutrons down to thermal energies does not improve the data description.

• The Bertini model has problems to describe the data for pion momenta around 9 GeV, where the
low energy parameterised model is clearly better. However, lowering the region of applicability in
the Bertini cascade has little effect. It leads to showers that are a bit shorter and narrower.

• The energy density is best described by the Fritiof fragmentation model. The inclusion of the
nuclear cascade models has only little influcence.

• The predictions of the low energy parameterised model is not well matched with the Bertini cas-
cade at the low energy end and with the quark gluon string model at the high energy end. This leads
to a significant uncertainty of the predictions in the energy range from a few GeV to 20−30 GeV.

In summary, there is no physics list that describes all features of the data. The best overall description of
the data is obtained with the Fritiof model with or without the Bertini cascade and with the quark gluon
string model with the Bertini cascade.

For the analysis of the first collision data, ATLAS has adopted the QGSP BERT physics list as a
default. This decision was mainly based on the better description of the response and the longitudinal
and radial shower extension.

The Fritiof model with the Bertini or the binary nuclear cascades represents an interesting alternative,
in particular the simulation of longer showers and the better description of the energy density allows for
interesting systematics studies.

16 Conclusion
Data of the combined test-beam taken in the year 2004, where a full slice of the ATLAS detector has
been exposed to pion beams from 2 to 180 GeV have been analysed. In view of the LHC proton-proton
collision data taking expected for this year, analysis techniques planned to be used for the reconstruction
of the hadronic final state have been investigated in detail.

The response and energy resolution of the combined calorimeter has been measured for various
possible pion energy reconstruction algorithms. It is found that a large fraction of the pion energy is
contained in a cone of radius 0.3.

A study of the sensitivity of the noise threshold in the topological cluster algorithm shows that the
perimeter cells around a cluster should be included. Although a cut of two standard deviations on the
neighbouring cells cut a significant fraction of the signal for low pion momenta, it has been shown that
the ATLAS standard setting of S = 4, N = 2 and P = 0 give the best overall performance. The Monte
Carlo simulations describe the variation of the noise thresholds rather well.

Emphasis has been put on the comparison of the data with Monte Carlo simulations in particular in
the momentum range below 9 GeV. The Monte Carlo simulations have difficulties to accuratly describe
the pion data for momenta below 9 GeV. Since pions at such momentum carry a large fraction of the jet
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shower development
physics list response resolution longitudinal lateral

VLE HE VLE HE VLE HE VLE HE
QGSP −10% −5% −5% +5% −50% −40% +5% +5%

QGSP BERT +3% +1% −10% −5% −30% −10% −3% ±3%
QGSP BERT HP +3% +1% −10% −5% −30% −10% −3% ±3%

QGSP BERT NQE +3% ±1% −10% −5% −40% −30% −3% ±3%
QGSP BERT TRV +3% ±1% −10% −5% −30% −10% −3% ±3%

QGSP BIC −10% −2% −10% −5% −40% −30% +5% +3%
QGS BIC −5% ±1% −10% −5% −40% −30% +5% +3%

FTFP ±6% ±4% −10% −5% −50% −5% +5% ±3%
FTFP BERT +5% +2% −15% −10% −30% +10% −3% ±2%
FTFP BIC +10% +3% −5% −5% ±30% ±10% −5% ±1%

Table 15: Summary of the comparison of the Geant4 Monte Carlo simulations to data. Compared
are various physics lists for the response, resolution as well as for the longitudinal and lateral
shower extension. Indicated are typical upwards (+) or downwards (−) fluctuations in percent.
The longitudinal shower development refers to rough estimates of the mean energy fractions in the
calorimeter compartments. The lateral shower development refers to the mean energy fraction in
a narrow cone around the shower axis. The symbol ± is used when the Monte Carlo simulation is
for some momenta above and for some other below the data.

energies, it can be expected that the Monte Carlo simulation will not be able to give a good description
of the hadronic final state for proton–proton collisions.

All models predict a resolution that is better than the one measured in the data. For QGSP BERT
the resolution in the Monte Carlo is better by 5−10%. The Bertini nuclear cascade model increases the
response and decreases the resolution which is in better agreement to data. For pion momenta below
10 GeV the data are described within 5%, while for pion momenta above 10 GeV the data are described
within 2%.

Generally, the use of nuclear cascade models gives a better description of the data. The Bertini
cascade is preferred over the binary cascade.

The radial and the longitudinal shower development is largely influcenced by the nuclear cas-
cade models. The quark gluon string fragmentation model together with the Bertini nuclear cascade
(QGSP BERT) gives the best overall description of the data. The longitudinal shower development at
high pion momenta is reasonably described, but at low pion momenta large discrepancies are observed.
For all pion momenta the simulated showers remain shorter and narrower than the ones in the data.
Nevertheless this physics list is recommended for the analysis of the first ATLAS collision data.

Simulations based on the Fritiof fragmentation models might offer an interesting alternative for sys-
tematics studies. Simulations with this physics list (FTFP, FTFP BERT or FTF BIC) produce showers
that are longer than the one in the data and the energy density is better described.

The present Monte Carlo simulations suffer from a mismatch of the predictions of the cascade, the
low energy parameterised and the quark gluon string model. This leads to an uncertainty of the de-
scription of the pion response and the shower topology of a few per cent in the pion momentum from
5− 9 GeV to 20-25 GeVthat seriously limit the possibility to correctly describe jets in proton proton
collisions.
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physics list response resolution longitudinal radial
QGSP low ok too short too narrow

QGSP BERT ok low short narrow
QGSP BERT HP ok low short narrow

QGSP BERT NQE ok low too short narrow
QGSP BERT TRV ok low short narrow

QGSP BIC low low too short too narrow
QGS BIC low low too short too narrow

FTFP ok low too short too narrow
FTFP BERT high low long narrow
FTFP BIC high low long narrow

Table 16: Summary of the comparison of the Geant4 Monte Carlo simulations to data. Compared
are various physics lists for the response, resolution as well as for the longitudinal and lateral
shower extension.
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Appendix A: Result Tables

combined response
Pbeam (GeV) Emean

reco /Pbeam Stat. Scale (%) Spread (%) CIS (%) Pion decay (%)
2.05 0.465 0.007 0.86 0.37 0.25 7.00
3.05 0.483 0.005 0.88 0.32 0.22 3.00
5.09 0.525 0.003 0.84 0.27 0.17 0.00
9.04 0.595 0.002 0.83 0.24 0.13 0.00

20.16 0.671 0.001 0.85 0.26 0.18 0.00
50.29 0.712 0.000 0.87 0.27 0.23 0.00
99.80 0.742 0.000 0.87 0.28 0.23 0.00

179.68 0.759 0.001 0.88 0.30 0.22 0.00

Table 17: Measured beam momentum, relative mean response, statistical uncertainty and relative
systematical uncertainty (in per cent) due to the overall energy scale, the cell non-uniformity and
the uncertainty of the CIS calibration and the bias due to the removal of the pion decays.

Pbeam( GeV) σE/E Stat.
2.05 0.61 0.015
3.05 0.53 0.010
5.09 0.43 0.005
9.04 0.33 0.003

20.16 0.22 0.002
50.29 0.16 0.001
99.8 0.13 0.001

179.68 0.11 0.001

Table 18: Nominal beam momentum, relative energy resolution, statistical uncertainty and relative
systematical uncertainty (in percent) due to the overall energy scale, the cell non-uniformity and
the CIS uncertainty.
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Appendix B: Software Information
The simulation of the Monte Carlo events has been done with the ATHENA release version 12.0.95.
Some packages have been modified to include Birks law These modifications are meanwhile part of the
ATLAS software

In the simulation of the barrel calorimeter (in case of the test beam) by default no cut is applied on
the time of the energy deposition. The time cut has been activated. The simulated energy deposits are
convoluted with the pulse-shape to take the time structure of the hadronis shower into account.

For the reconstruction the release 12.0.7 has been used. The reconstruction used some modifactions
to improve the energy reconstruction.

For the TileCal the improvements in the pion energy reconstruction that have been worked out by the
TileCal pion energy reconstruction task-force in the year 2007 and 2008 and are in the ATLAS software
since The tags are summarized in Table 19.

The tag for the energy reconstruction in the LAr are tabulated in [4].
Some of the modifications were only needed for the local hadronic calibration. These modifications

are not necessary for the study presented here, but are relevant for future work.

Calorimeter/CaloCnv/CaloCondAthenaPool/CaloCondAthenaPool-00-00-00-01
Calorimeter/CaloClusterCorrection/CaloClusterCorrection-00-02-71-04
Calorimeter/CaloConditions/CaloConditions-00-00-02-02
Calorimeter/CaloEvent/CaloEvent-01-02-31-06
Calorimeter/CaloRec/CaloRec-02-06-97-12
Calorimeter/CaloTools/CaloTools-00-01-68-10
Calorimeter/CaloUtils/CaloUtils-00-02-75-03
LArCalorimeter/LArCalibTools/LArCalibTools-00-03-31-01
LArCalorimeter/LArTestBeam/LArTBRec/LArTBRec-00-02-23
TileCalorimeter/TileCalib/TileCalibCondObjects/TileCalibCondObjects-00-00-01
TileCalorimeter/TileCalibObjects/TileCalibObjects-00-07-06
TileCalorimeter/TileConditions/TileConditions-00-05-25-12
TileCalorimeter/TileEvent/TileEvent-00-06-13
TileCalorimeter/TileIdentifier/TileIdentifier-00-01-06
TileCalorimeter/TileSvc/TileByteStream/TileByteStream-00-04-07
TileCalorimeter/TileRecUtils/TileRecUtils-00-03-06-11
TileCalorimeter/TileTBRec/TileTBRec-00-03-16-10
InnerDetector/InDetTestBeam/InDetTestBeamAlgs/InDetTestBeamCBNT/InDetTestBeamCBNT-00-01-67-01

Table 19: Summary of the software modifications that have been used in the reconstruction on top
of the standard Atlas software release version 12.0.7.
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Appendix C: Topological Cluster Moment Distributions
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Figure 51: Distribution of the energy fraction of the cell with the highest energy with respect to
the total cluster energy fmax for pions with beam momenta from 2 - 180 GeV. Shown are data as
closed points and Monte Carlo simulations as lines. Only statistical uncertainties are shown.

Appendix C: Energy Distributions in Calorimeter Compartments
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Figure 52: Distribution of the energy fraction of the sum of the cells close to the shower axis with
respect to the total cluster energy fcore for pions with beam momenta from 2 - 180 GeV. Shown
are data as closed points and Monte Carlo simulations as lines. Only statistical uncertainties are
shown.
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Figure 53: Distribution of the shower depth λcentre for pions with beam momenta from 2 - 180 GeV.
Shown are data as closed points and Monte Carlo simulations as lines. Only statistical uncertain-
ties are shown.
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Figure 54: Distribution of the second longitudinal shower moment 〈λ 2〉 (shower length) for pi-
ons with beam momenta from 2 - 180 GeV. Shown are data as closed points and Monte Carlo
simulations as lines. Only statistical uncertainties are shown.
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Figure 55: Distribution of the second radial moment 〈r2〉 (shower width) for pions with beam
momenta from 2 - 180 GeV. Shown are data as closed points and Monte Carlo simulations as
lines. Only statistical uncertainties are shown.
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Figure 56: Distribution of the first 〈ρ〉 energy density moment for pions with beam momenta
from 2 - 180 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only
statistical uncertainties are shown.

99



)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.00000050.0000010.00000150.0000020.0000025

410

510

610

710 = 2 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.0000010.0000020.0000030.0000040.000005

410

510

610

= 3 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.0000020.0000040.0000060.0000080.00001

310

410

510

610
= 5 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.0000020.0000040.0000060.0000080.000010.000012

410

510

610 = 9 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.000020.000040.000060.00008 0.0001

210

310

410

510 = 20 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
10

210

310

410

510 = 50 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.00050.0010.00150.0020.00250.0030.00350.0040.00450.005

1

10

210

310

410 = 100 GeVbeamP

)6/mm2 (MeV2ρ <
cl
∑ cl1/N

0 0.0020.0040.0060.008 0.01 0.0120.0140.016

−110

1

10

210

310
= 180 GeVbeamP Data

QGSP_BERT
QGSP
FTFP
FTFP_BERT

Figure 57: Distribution of the second 〈ρ 2〉 energy density moment for pions with beam momenta
from 2 - 180 GeV. Shown are data as closed points and Monte Carlo simulations as lines. Only
statistical uncertainties are shown.
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Figure 58: Energy distribution in the calorimeter compartments for pions with a momentum of
2 GeV. Only statistical uncertainties are shown.
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Figure 59: Energy distribution in the calorimeter compartments for pions with a momentum of
3 GeV. Only statistical uncertainties are shown.
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Figure 60: Energy distribution in the calorimeter compartments for pions with a momentum of
5 GeV. Only statistical uncertainties are shown.
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Figure 61: Energy distribution in the calorimeter compartments for pions with a momentum of
9 GeV. Only statistical uncertainties are shown.
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Figure 62: Energy distribution in the calorimeter compartments for pions with a momentum of
20 GeV. Only statistical uncertainties are shown.
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Figure 63: Energy distribution in the calorimeter compartments for pions with a momentum of
50 GeV. Only statistical uncertainties are shown.
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Figure 64: Energy distribution in the calorimeter compartments for pions with a momentum of
100 GeV. Only statistical uncertainties are shown.
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Figure 65: Energy distribution in the calorimeter compartments for pions with a momentum of
180 GeV. Only statistical uncertainties are shown.
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