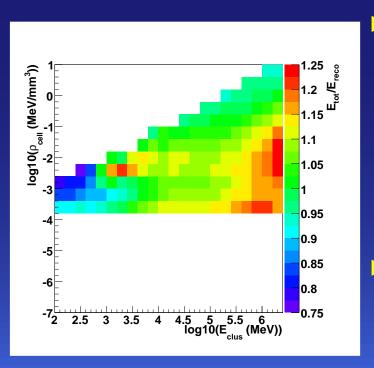

# **Local Hadron Calibration Session**


Hadronic Calibration Workshop 09 Sven Menke, MPP München 24. June 2009, Foz do Arelho, Portugal

- Local hadron calibration
  - Classification
  - Cell weighting
  - Out-of-cluster corrections
  - Dead-material corrections
  - Jet-level corrections
- Status of new constants for QGSP\_BERT
- Algorithm improvements
  - Particle ID for calibration hits
  - Truth particle extrapolation
- Readiness for First Data
  - Pile-up, noise, bad cells

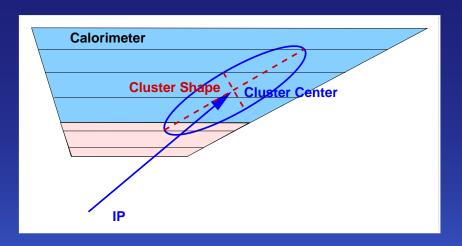
#### **Local Hadron Calibration**

- Classify and calibrate topo clusters to hadron-level
- Classification
  - use shower shape variables (cluster moments) like shower depth and (weighted) energy density of the cell constituents
  - em showers are less deep and have higher average energy density than had showers
  - make a cut on probability ratio to observe a neutral over a charged pion in a given bin derived from single pion simulations (right plot)





#### Calibration


- cell weights are applied to clusters classified as hadronic
- derive cell weights from Geant4 true energy (calibration hits) including invisible energy and absorber deposits and reconstructed cell energy for each η region and layer:
   w<sub>i</sub> = ⟨E<sub>true</sub>/E<sub>reco</sub>⟩, i = bin#(E<sub>cluster</sub>, E<sub>cell</sub>/V<sub>cell</sub>)
- example weights in main sampling of EM calorimeter for  $2.0 < |\eta| < 2.2$
- Correct for dead material and out-of-cluster deposits for clusters classified as hadronic and electromagnetic (corrections differ)

#### **Local Hadron Calibration Cluster Moments**

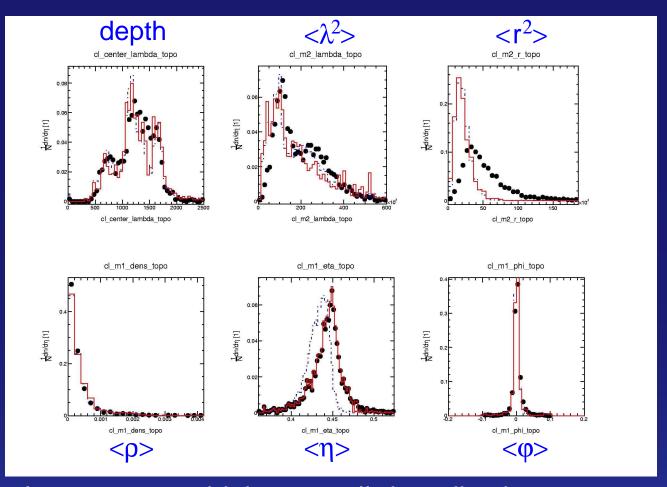
## 9 most popular moments are on AOD

- LATERAL normalized second lateral moment
- LONGITUDINAL normalized second longitudinal moment
- SECOND\_R the width squared of the cluster
- SECOND\_LAMBDA the length squared of the
- CENTER\_LAMBDA the cluster center depth in the calorimeter
- CENTER\_MAG the distance IP cluster center
- FIRST\_ENG\_DENS the first moment of  $\rho = E/V$
- ENG\_FRAC\_MAX the ratio of the hottest cell energy over the cluster energy

 ISOLATION fraction of cells neighbouring the perimeter cells of the cluster which are not included in other clusters



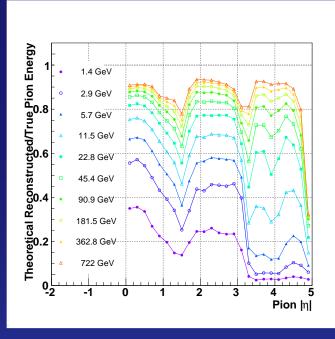
# other important moments available on ESD are

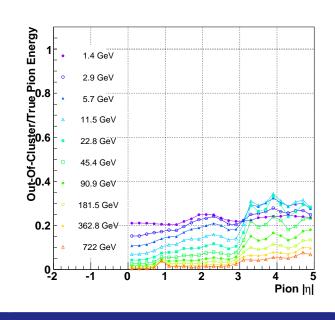

- CENTER\_X/Y/Z the position of the cluster
- ENG\_FRAC\_EM the fraction of cluster energy in EM samplings
- ENG\_FRAC\_CORE the fraction of cluster energy in the leading cells in every sampling
- DELTA\_PHI/THETA/ALPHA angular deviations of the shower axis from IP-cluster-center axis
- ENG\_CALIB\_\* 13 of the 19 new moments of calibration hit energies associated to the cluster (in simulations with calibration hits; these are also on AOD)

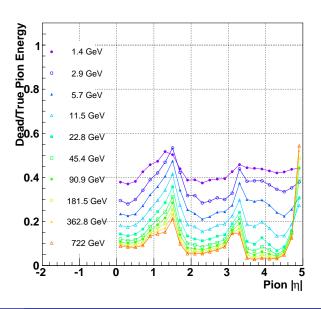
#### **Moments Contributions**

- ▶ look at submitted material from Tancredi Carli for 2004 barrel test beam data and 4 G4 physics lists (QGSP, QGSP\_BERT, FTFP, FTFP\_BERT)
- improved radial description but data still wider
- still problem at low pion energies (kink in models)
- look at submitted material from Andrei Kiryunin and Pavol Strizenec for 2004 endcap test beam data and default G4 physics list (QGSP\_BERT)
- $\triangleright$  substructure of  $\lambda_{\text{CENTER}}$  well described
- largest deviations still in lateral shape
- but improved compared to QGSP\_EMV

#### **Moments** ► Contributions


 old comparison from Peter Speckmayer with QGSP\_EMV shows much bigger differences in lateral shape





- very important to use only moments which are well described
- validation of default athena algorithms with test beam data is crucial

## **Local Hadron Calibration > Energy Corrections**

- Cell weights
  - account for the non-compensation of the calorimeters
- Out-Of-Cluster Corrections
  - recover lost energy inside the calorimeters due to noise thresholds
- Dead-Material Corrections
  - recover lost energy outside the calorimeters







- Cell Weights
  - can be defined non-ambiguously from calibration hits and reconstructed cell energy
- Out-Of-Cluster & Dead-Material corrections
  - need assignment algorithm of nearby calibration hits to clusters
  - can correct only those cases where a signal cluster is present
    - jets need additional corrections for lost low energetic particles

## **Local Hadron Calibration >** Refinement of weights

- New athena based weight extraction
  - new athena package CaloLocalHadCalib to
    - extract classification, cell weights and out-of-cluster corrections from (private) ESDs with calibration hits
    - ► Algorithms present are: GetLCClassification, GetLCWeights, GetLCOutOfCluster GetLCDeadMaterialTree
    - produce one set of histograms (one tree for DM) per athena job; merged later if needed
    - package is in CVS and in release 14.5.0 (DM since 15.0.0)
- Refinement of hadronic weights with CaloLocalHadCalib and 14.2.21
  - based on  $\sim$  6  $\cdot$  10<sup>6</sup> single pions  $(\pi+,\pi^-,\pi^0)$  produced as mc08.10741[012] on the grid
  - no noise cuts in cell selection
  - use inversion method  $(E_{\rm true}/\langle E_{\rm rec}\rangle)$  instead of  $\langle E_{\rm true}/E_{\rm rec}\rangle$
  - include TileGap1, TileGap2
  - discard weights for  $E_{\rm rec} > 0.5 E_{\rm true}^{\rm max}$  to avoid bias; extrapolate beyond

### **Local Hadron Calibration Parameter Refinement of OOC/DM corrections**

#### Refinement of out-of-cluster corrections

- store corrections relative to cluster energy on EM-scale
- correct for out-of-cluster energy assigned to clusters only
  - ▶ with help of recently added CaloCalibHitClusterMoments

```
ENG_CALIB_TOT: total calib hit energy for a cluster
```

ENG\_CALIB\_OUT\_M: medium ( $\Delta \alpha < 0.5$ ) associated out-of-cluster calibration hits in proportion to ENG\_CALIB\_TOT of all matching clusters

ENG\_CALIB\_OUT\_L/T: same for loose ( $\Delta \alpha < 1.0$ ) and tight ( $\Delta \alpha < 0.3$ ) association – disabled by default

- the new moments are available automatically for each dataset with calibration hits on ESD/AOD/DPD
- similarly for dead-material energy Gena implemented new calibration-hit-based moments ENG\_CALIB\_DEAD\_TOT: dead material energy assigned to all clusters inside the medium cone (see above) with relative weight  $\sqrt{E} \exp(-\Delta R/0.2)$ .
- detailed studies are possible with the following additional moments defined by Gena:
   ENG\_CALIB\_EMBO/EMEO/TILEG3: calibration hit energy in pre-sampler and tile gap scintillator inside clusters

ENG\_CALIB\_DEAD\_EMBO/TILEO/TILEG3/EMEO/HECO/FCAL/LEAKAGE/UNCLASS: associated dead material energy according to the 8 different regions

#### Local Hadron Calibration Refinement of DM corrections G. Pospelov

## Refinement of dead material corrections

- correct for dead material energy assigned to clusters only
  - with Gena's assignment of dead material hits to clusters
- treat presamplers as dead-material
  - simplifies the separation of out-of-cluster and dead-material corrections
- effect of bias in dead-material corrections understood:
   binning in noise containing quantity creates bias for cut > 0
  - use reco vs. truth instead of truth vs. reco for profile
- make leakage correction explicit instead of implicit

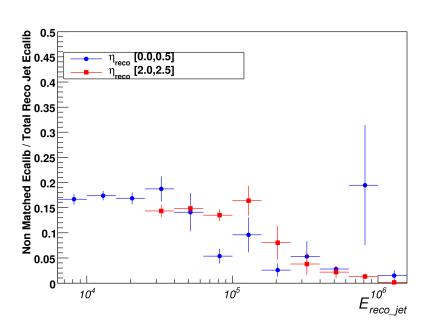
# Expected effects

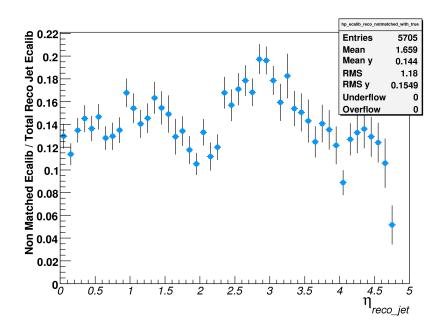
- better weighting performance due to correct simulation
- smaller out-of-cluster and dead-material corrections since we correct for assignable stuff only (Discussion at Ringberg)
- better defined base for jet-level corrections

### **Local Hadron Calibration Contributions**

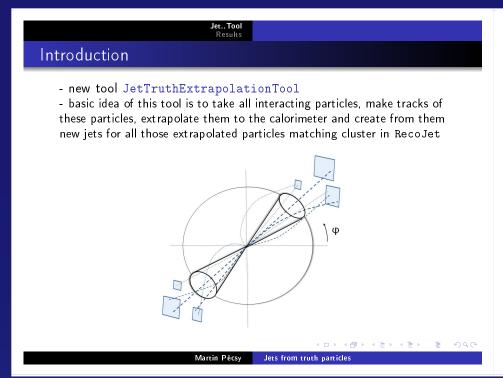
- look at submitted material from Gennady Pospelov for updated calibration hit moments and single pion performance of current weights and Particle ID studies in jet environment
- look at submitted material from Paola Giovannini for jet-level performance of individual local correction steps

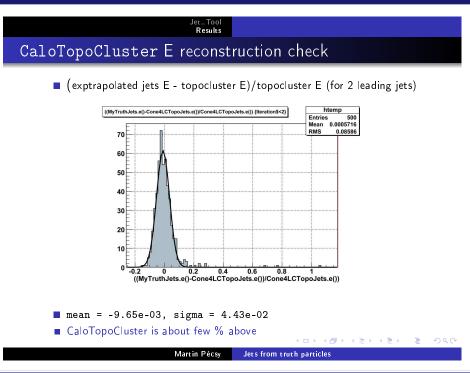
## **Local Hadron Calibration** > **Jet-level corrections**


- actual discussion of Jet energy scale deferred to jet-energy-scale session
- look at submitted material from Andreas Jantsch and Serena Psoroulas about jet-moments useful for jet-energy-scale corrections


- skip if it will be discussed in Jet-E-scale III session
- On my wishlist since a long time:
  - if we'd know exactly which primary generator particle caused which calibration hit, we'd have no ambiguities in jet-truth-matching!
  - deficits in the jet-truth-matching can be made visible
  - actual true expected energy can be derived for clusters, jets, MET, ...
- Gena modified 10 athena packages to keep ParentID for every G4Track
   provides new method CaloCalibrationHit::particleID() returning the barcode of the primary particle causing the hit
- Performance price

|                                   | standard 14.2.21 | hits with ParticleID |          |     |
|-----------------------------------|------------------|----------------------|----------|-----|
| average time per event, sec       | 2139.7 ± 187.6   | 2320.2 ± 173.1       | ~ 1.08 ↑ |     |
| memory per event, Mb              | 694.1            | 684.1                | ~ 1.0    | 1.4 |
| simul size, Mb/event              | 2.35             | 5.68                 | ~ 2.4 ↑  | J4  |
| av.number of DM hits per event    | 40770 ± 6277     | 245500 ± 95160       | ~ 6.0 ↑  |     |
| av.number of active+inactive hits | 70840 ± 18660    | 176300 ± 62100       | ~ 2.5 ↑  |     |


- about the same factors for all JX samples
- ightharpoonup CPU time increases by  $\sim 10\%$
- $\blacktriangleright$  disk size per simulated file increases by  $\sim$  140% or 3.3 Mb/ev
- disk size per digitized file increases also by 3.3 Mb/ev


#### Foreign calibration energy of Cone4LC reco matched jet





Average ratio of calibration energy inside reco jet which doesn't belong to the particles of true matched ( $\Delta R < 0.3$ ) jet as a function of energy of reco jet (left), eta of reco jet (right).





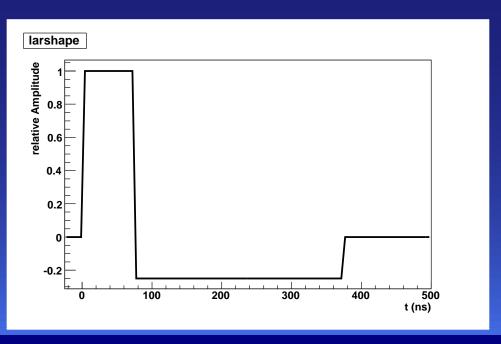
- skip if already discussed in simulation session
- Extrapolation tool can be used when no ParticleID is present
- Current status
  - code JetParticleExtrapolationTool is in CVS in JetSimTools-00-01-04
  - will be used in rel 15.0.0 to have less ambigous truth matching

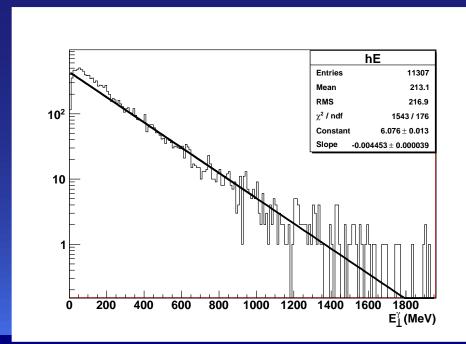
# **Algorithm Improvements EFlow based corrections**

look at submitted material from Mark Hodgkinson on energy flow technices for correcting cluster energies with the help of tracks

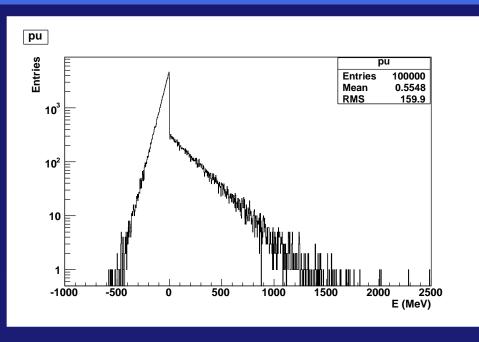
#### **Readiness for First Data** Noise

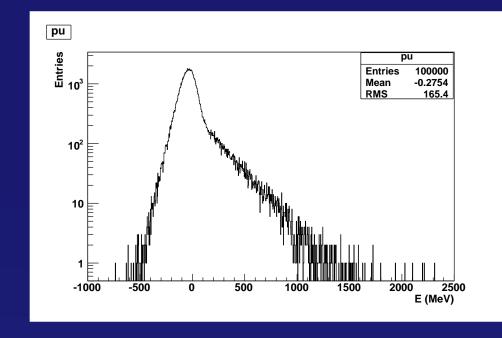
#### Electronics noise

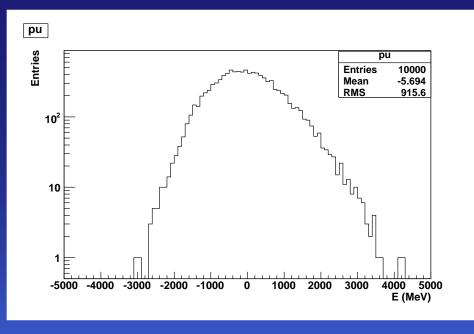

- well described (see comissioniong note on topo clusters
   ATL-COM-2009-227 might have an INT number now ...) for LAr
   (single Gauss); single Gauss not sufficient for Tile but larger RMS is
   consistent with larger number of seeds in Tile ► double Gauss will
   be able to restore elec noise description in Tile
- code changes in noise tool for double Gauss shape in Tile are already tested (in the release already?)
- PileUp noise
  - see contribution from Christoph Ruwiedel on PileUp energies in LAr cells

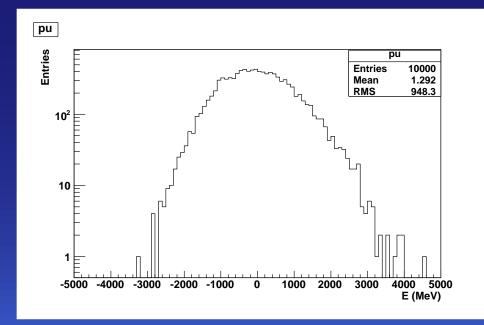

## Readiness for First Data LAr Shape and PileUp

- can we adjust thresholds for topo clustering such that the total energy remains 0 also after the noise cuts?
- simplified LAr shape:
  - total integral over time is zero
  - ightharpoonup amplitude for  $0 < t < t_1$  is 1
  - ightharpoonup amplitude for  $t_1 \le t < t_1 + t_2$  is -t2/t1
- ightharpoonup photon  $p_{\perp}$  spectrum from min-bias simulation (Pythia):
  - exponential distibution
- ightharpoonup just one min-bias event over time  $t_1 + t_2$  without elec noise:
  - ightharpoonup noise thresholds scale with  $t_1/t_2$
  - riangleright for positive cut at  $n\sigma$  need negative cut at  $-t_1/t_2n\sigma$  in order to keep energy at 0
- add elec noise:
  - weaker scaling until fully symmetric thresholds are restored in the elec-noise only case
- rightharpoonup multiple min-bias events over time  $-(t_1 + t_2) : (t_1 + t_2)$  with 3 samplings :
  - spectrum gets much more gaussian; tails on positive side remain; mean is still 0
  - $\blacktriangleright$  noise thresholds still don't scale with  $t_1/t_2 \blacktriangleright$  with elec noise same weaker scaling without noise


# Readiness for First Data LAr Shape and PileUp


- Example plots
  - $t_1 = 75 \, \text{ns}, \, t_2 = 300 \, \text{ns}$
  - $ightharpoonup dN/dE_{\gamma} \sim \exp(-E_{\gamma}/225\,\mathrm{MeV})$
  - ightharpoonup elec noise for single min-bias event 30 MeV; reduced threshold scaling from 4/-1 to 4/-1.18
  - $\blacktriangleright$  # multiple min-bias events/bunch crossing = 3.33; reduced thresholds scaling to 4/-2.9
  - ► elec noise for multiple min-bias events 300 MeV; same reduced scale




# Readiness for First Data LAr Shape and PileUp









# **Conclusions**

