Using Track based missing Et tools to reject fake MET background

Zhijun Liang ,Song-Ming Wang ,Dong liu, Rachid Mazini
Academia Sinica

TWiki page for Track Based MET project:

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TrackMET

Why measuring MET with track?

- Provide an alternative measurement
- --Different detector has different un-related systematic effect
- Can associate tracks to primary vertex, can calculate MET and SumPt based on primary vertex of the event ,thus more correlated to true MET of the main physics process – important in pileup case
- Will deteriorate less than calorimeter based variables as instantaneous luminosity increase
- Has less effect due to cosmic muon and beam background
- Disadvantages :
- --See only charged particles
- --Smaller geometrical coverage
- --Momentum resolution get worse in higher Pt
- Trackmet tool could be used in rejecting these background in W/Z analysis:
- QCD jet background
- Cosmic background
- Pileup background
- Beam halo background

How to calculate Track based MET? Loose track selection or tight selection?

- Select good tracks for this measurement
- Select tracks from primary interaction
- Remove tracks from conversion
- Too loose or too tight could worsen Track MET resolution
- This track selection criteria need more time to do careful study
- Current track selection cut for reconstructing track MET :
- ☐ |Track _z0 respect to primary vertex |<20 mm
- ☐ |Track _d0 respect to primary vertex |<2 mm
- □ Track Pt>0.5GeV, Track Pt<300GeV</p>
- ☐ Number of pixel hits >=2
- □ Number of SCT hits >=6
- □ Track MET = -1 *(Vector sum of the selected track momentum)
- ☐ The work of Implementation of Track based MET algorithm in official MissingET reconstuction package is on going

Example 1:Reject QCD background in Wenu analysis Track_MET VS Calo_MET

(Wenu sample :events with at least one medium isem electron)

Example 1:Reject QCD background in Wenu analysis

Track_MET VS Calo_MET

(QCD Dijet JF17 sample)

5/16/2009 Dobserve no correlation between Calo_MET and Track_MET

Track Met in W analysis: cut flow

Cut A: Medium IsEM electron Pt>20GeV 0<|Eta|<1.37 or 1.52<|Eta|<2.37 EtCone/Et<0.2

Cut B:Calo MET >20GeV (CutB)
Cut C:track MET & Calo MET correlation
|CaloMET_Phi- TrackMET_Phi| <0.9

	W(enu)	JF17	S/B
Cross section (pb)	17440	1.461E9	
Generator Filter efficiency	0.625	0.0706	
Expected events numbers in 100 pb-1	1090k	103076k	
Expected event in 100 pb-1 (after cut A : electron ID cut)	(556+-3)k	(1784+-52)k	
Expected event in 100 pb-1 (after cut B: Calo MET cut)	(522+-3)k	(149+-15)k	3.57+-0.03
Expected event in 100 pb-1 (after cut C: track met cut) CaloMET_Phi- TrackMET_Phi < 0.9	(465+-3)k	(48+-9)k	9.68+-0.07

Make use of CaloMET and TrackMET correlation to define a cut. Track met cut can help to improve signal to background ratio. S/B ratio can almost reach 10 after using track met cut

Summary

- TrackMet could help in rejecting processes which are source of fake MET, such as QCD Di-jets, cosmics, pile-up effects...
 It can be a powerful tool in W/Z analysis, and any other processes with real MET.
- On Going work:
- ☐ The Academia Sinica group working toward the implementation and the use in physics analysis.
- ☐ Implementation of TrackMET alogorithm in the global MET package.
- ☐ TrackMET information will be calculated at reconstruction level from ESD/DPD data, with the option of re-running it at AOD level.
- ☐ Internal Note in preparation summarizing the implementation and the performances of TrackMET.
- ☐ Feasibility study for H->WW analysis (rejection of fake MET from Z-ee/mumu)
- ☐ Study of improvement on QCD jet rejection in W->tau+nu and Z->tautau Results will be shown a the next physics group meetings

Discussion

How to calculate Track based MET?
 Loose track selection or tight selection ?

How to calculate Track based MET? Loose track selection or tight selection?

- Select good tracks for this measurement
- Select tracks from primary interaction
- Remove tracks from conversion
- Too loose or too tight could worsen Track MET resolution
- This track selection criteria need more time to do careful study
- Current track selection cut for reconstructing track MET :
- ☐ |Track _z0 respect to primary vertex |<20 mm
- ☐ |Track _d0 respect to primary vertex |<2 mm</p>
- □ Track Pt>0.5GeV, Track Pt<300GeV</p>
- ☐ Number of pixel hits >=2
- □ Number of SCT hits >=6
- □ Track MET = -1 *(Vector sum of the selected track momentum)
- ☐ The work of Implementation of Track based MET algorithm in official MissingET reconstuction package is on going

Track distribution before track quality cut (QCD Dijet JF17 sample)

Could we Use W(enu) data to optimize track selection criteria?

- Use Track based MET to reconstruct transverse mass of W, and see how track selection cut would change M_T distribution
- Use track impact parameter d0 as a example.

In the figure, if the d0 cut too loose, there would be a unphysical tail in

track based M_T distribution .

W Track based transverse mass[GeV]

Could we use Dijet data to optimize track selection criteria?

- Dijet samples do not have real MET.
- X or Y component of Track MET should have Gaussian shape, the width of TrackMET X Y component reflect TrackMET resolution.
- Try to optimize impact parameter cut to get better resolution of TrackMET.

Track_d0(mm)

Track distribution before track quality cut (QCD Dijet JF17 sample)

Track distribution before track quality cut (QCD Dijet JF17 sample)

After track quality cut, Track eta distribution looks much better.

Discussion

 Could we use TrackMET tool to reject pileup background?

Could we use TrackMET tool to reject pileup background?

- MET resolution become worse in pileup case, rejection power of MET cut in W analysis become weak.
- In order to continue W analysis or get control sample of W in pileup situation, we need better way to reject events with fake MET.
- Ideas is that calorimeter does not know where this deposited energy comes from ,while tracker know which track comes from which vertex .
- Track Met could build up MET for each collision vertex ,without mixing up primary interaction and others min-bias events.

Example 2: TrackMET performance in Pileup samples Calo based MET: Dijet J2

Red: pile up

Example 2: TrackMET performance in Pileup samples Track based MET: Dijet J2

Could we use TrackMET tool to reject pileup background?

- CaloMET is very sensitive to pileup effect, its performance worsen a lot in case of pileup.
- Track based Missing Et is less affected by pileup background
- Since resolution of TrackMET and CaloMET is close to each other in pileup case.
- Correlation between TrackMET and CaloMET become more important to reject fakeMET in pileup situation

Discussion

 How to optimized TrackMET cut in W(enu) analysis to get the best S/B?

Review of W analysis in CSC note

- Using Track met as a tool to reject QCD background :
- In CSC note, we see QCD di-jet is main background in W cross section analysis,
- Here is Table quoted from csc note :
- Table: Num of signal and background events (x10⁴) in 50 pb ⁻¹

Selection	W ightarrow e v	jets	$W \rightarrow \tau \nu$	$Z \rightarrow ee$
Trigger	37.01 ± 0.09	835 ± 18	1.73 ± 0.02	6.07 ± 0.01
$p_T > 25 \text{ GeV}, \eta < 2.4$	30.84 ± 0.09	383 ± 12	1.03 ± 0.01	2.95 ± 0.01
Electron ID	26.77 ± 0.09	110 ± 6	$\boldsymbol{0.91 \pm 0.01}$	3.23 ± 0.01
$E_T > 25 \text{ GeV}$	22.06 ± 0.09	4.6 ± 0.7	$\boldsymbol{0.55 \pm 0.01}$	$\boldsymbol{0.06 \pm 0.01}$

- How to improve S/B using track met ?
- No real missing ET in Di-jet sample, so if we do two kind of missing ET measurement: track Met and Calo Met, they should be not correlated.
- While in W sample, track Met and Calo Met are highly correlated since there is real missing ET, and there is not too much neutral particles inside these two samples.
- Track met provide us a independent measurement ,so we can double check whether there is real missing ET in the event .

Track_MET VS Calo_MET (QCD Dijet JF17 sample)

- Observe no correlation between Calo_MET and Track_MET
- That is because there is no real missing ET in dijet sample,
 What MET measuring is just the fluctuation.
- The fluctuation can be very different and uncorrelated in tracker and Calo
- In the following page, we will see how Track_MET and Calo_MET are correlated in sample with real missing ET (Wenu) sample

MET_Phi: W (enu) vs JF17

Tuning the trackmet cut

Define a Track_met cut (signal efficiency vs S/B)

optimized point could be found in right plot . The tuning point of the curve , is the best choice .

- 1.Define Track_Met cut : |CaloMET_Phi- TrackMET_Phi| < 0.9
- 2.So using this track_MET VS Calo_MET correlation cut,
- we can gained a factor of 3 in Signal to background ratio(S/B)
- While only losing 10% of signal events

Track Met in W analysis: cut flow

Cut A: Medium IsEM electron Pt>20GeV 0<|Eta|<1.37 or 1.52<|Eta|<2.37 EtCone/Et<0.2

Cut B:Calo MET >20GeV (CutB)
Cut C:track MET & Calo MET correlation
|CaloMET_Phi- TrackMET_Phi| <0.9

	W(enu)	JF17	S/B
Cross section (pb)	17440	1.461E9	
Generator Filter efficiency	0.625	0.0706	
Expected events numbers in 100 pb-1	1090k	103076k	
Expected event in 100 pb-1 (after cut A : electron ID cut)	(556+-3)k	(1784+-52)k	
Expected event in 100 pb-1 (after cut B: Calo MET cut)	(522+-3)k	(149+-15)k	3.57+-0.03
Expected event in 100 pb-1 (after cut C: track met cut) CaloMET_Phi- TrackMET_Phi < 0.9	(465+-3)k	(48+-9)k	9.68+-0.07

Make use of CaloMET and TrackMET correlation to define a cut. Track met cut can help to improve signal to background ratio. S/B ratio can almost reach 10 after using track met cut

Discussion

 Could TrackMET tool be use in other fake MET background?

Example: Using trackMET to reject Z(ee) background in W(enu)

- TrackMET VS CaloMET correlation would also help in rejecting Z(ee)
 ,which is secondary background of W(enu) Analysis.
- Select events with at least one electrons are reconstructed, make Dphi plot as below
- We can play the same trick as in Dijet case, further rejecting Z(ee) events by making cut on | Calo MetPhi-Track MetPhi|<0.9

Example: Using trackMET to reject Z(ee) background in W(enu) TrackMET VS CaloMET in Z(ee) with at least one electron

Backup: Pileup and nonpileup Dijet J2 Data sample

- MC08 Official Pythia Dijet events as non pileup reference sample :
- □ No Pileup ,ATLAS-GEO-02-01-00,OFLCOND-SIM-00-00-03
- mc08.105011.J2_pythia_jetjet.recon.AOD.e344_s479_r541_tid026916
- ☐ Simu: 14.2.0.1 Digi: 14.2.10.1 , Reco: 14.2.20.3
- Dijet sample in Luminosity 10³³ cm⁻² s⁻¹, bunch space 75ns
- valid1.105011.J2_pythia_jetjet.recon.AOD.e344_s479_d145_r588
- ☐ Pileup Sample , +6.9 Minimum-bias events per bunch crossing
- ☐ ATLAS-GEO-02-01-00,OFLCOND-SIM-00-00-03
- ☐ Simu :14.2.10.1 Digi :14.2.24.1 Reco: 14.2.24.1

Backup: Total number of tracks and vertex per events

Backup: Number of pixel hits and SCT hits per track

Backup:

Track Z0 respect to Primary vertex

Red: pile up

Broaden distribution in pileup sample

Track_Z0 significant

6/16/2009

33

Sample list

- W (enu) sample (100k events): mc08.005104.PythiaWenu.recon.AOD.e323_s400_d99_r474
- Dijet (6000k events) :

mc08.105802.JF17_pythia_jet_filter.recon.AOD.e347_s462_r563