Numerical Inversion for Correcting the Response as a Function of p_T

David López Mateos (with A. Schwartzman and E. Hughes), June 23, 2009

Introduction

Method Description

Results

Introduction

- We want to derive a Monte Carlo based simple scale correction (for very first studies with data)
- We need to derive then a correction as a function of p_T^{reco}
- However, in the Monte Carlo, if we bin as a function of p_T^{reco}, response distributions are not gaussian
- Only binning as a function of p_T^{true} we can get gaussian response distributions from which to derive a response correction

How do we derive a simple MC-based correction as a function of p_T^{reco} ?

Method Description

Method to apply simple Monte Carlo response correction as a function to data as a function of $p_T^{
m reco}$

- 1. Calculate $R(p_T^{
 m true})$ from the Monte Carlo
- 2. Use $R(p_T^{
 m true})$ to transform $p_T^{
 m true}$ to $p_T^{
 m reco}$ (no jet changes bin)
- 3. Use new response function as a function of $\,p_T^{
 m reco}$ to derive a response correction

----- Original bins

New bins

Method and Improvement in Resolution

Performance (|η|<0.3)

Sebastian Eckweiler calculated numerical inversion corrections for all jet collections in the DPDs used for this workshop, so you should see a lot more performance plots using numerical inversion