Absolute Jet Energy Scale using MPF, Preparations for Data

Teresa Spreitzer

Simon Fraser University

June 25, 2009

MPF Response measurements

Response measurement for the jet configurations for early data Photon: $E_T>10$ GeV, $|\eta|<2.5$ Jet: $E_T>7$ GeV, $|\eta|<2.5$

Compare the response in the eta bins. Conclusions limited by statistics.

Performance - Closure Tests

Testing in Gamma-Jets

- EM scale jets do well, recall still need a showering correction
- H1 does not have consistent energy scale between jet and rest of calorimeter (E_T^{miss}), thus, not suitable for MPF

Testing in Di-Jets

- Up to 3.5% difference between γ -jet and di-jets
- Difference expected from theory

Eta-dependent corrections

- No eta-corrections, $|\eta| < 2.5$
- No eta-corrections, $|\eta| < 0.3$
- Derive the response correction, and do the closure tests with eta-corrected jets.
- ullet Apply the response correction derived in region $|\eta| <$ 0.3, the reference region, to all eta-corrected jets

- Will try to define an eta-dependent correction, based on relative response
- Expect to be be applied after absolute scale

Pile-up

- Pile up samples with no correction gives response > 1, adding in extra energy to jet which is not balanced by photon
- We see that the offset correction approaches the response we see without pile-up

Systematics

- \bullet Largest systematic is deriving energy scale in $\gamma+{\rm jet}$ events, and applying to Di-Jets. Up to 3.5%
- Looked at loosening the photon isolation cuts, no significant effect
- Varied the response correction by the errors on the Wigmans fit parameterization, closure plots changed by 1% in samples with adequate statisites
- Inserted an additional 5 GeV of E_T^{miss} in constant direction, not correlated with jet or photon direction. Try to mimic extraeous E_T^{miss} from detector effects. Changes to response correction function < 0.2%. More study planned.

Backup

Introduction - #_T Projection

- developed first for DØ experiment
- in words: sum up all \overrightarrow{E}_T outside of γ and balance against γ

definition: $\not\equiv_{\mathcal{T}}$ projection

$$R_j(E) = 1 + rac{
otin _T \cdot \hat{m{n}}_{\gamma}}{m{p}_T^{\gamma}} = rac{\sum' \overrightarrow{E}_T \cdot \hat{m{n}}_{\gamma}}{m{p}_T^{\gamma}}$$

 $\sum' \rightarrow \text{sum over } \overrightarrow{E}_T \text{ outside}$ of p_T^{γ} system.

Pros and Cons

- ullet sensitive to ISR/FSR (more to ISR) reduce with a $\Delta\phi({
 m jet},\gamma)$ cut
- ullet not sensitive to UE (to 1st order) since UE is ϕ -symmetric and terms cancel in the sum
- (almost) independent of jet algorithm (therefore of cone correction, seed thresholds, etc.)

Thoughts on p_T balanced η -intercalibration

At particle level the balance equation is

$$E_T^j = E_T^r$$

The condition for η correction is to set

$$E_T^j \cdot R(E_T^j \cosh \eta_j; \eta_j) = E_T^r \cdot R(E_T^r \cosh \eta_r; \eta_r)$$

$$\frac{R(E_T^j \cosh \eta_j; \eta_j)}{R(E_T^r \cosh \eta_r; \eta_r)} = 1$$

- In the reference region $\cosh \eta \sim 1$, $R(E^r) = R(E_T^r)$
- \bullet For forward jets, neglecting differences in dead material across $\eta,$ the $\eta\text{-correction}$ demands that

$$\frac{R(\cosh\eta_j E_T^j)}{R(E_T^j)} \neq 1$$

- For $\eta = 3$, $\cosh \eta \sim 10!$
- Recall $R\alpha \log(E)$

Next Steps

- The structure of the calorimeters is clearly seen
- The η -dependence is mostly due to different response in different sub-detectors
- Better to apply an η -correction after absolute corrections