

New things to do with lots of xenon

GRavitation AstroParticle Physics Amsterdam

Christopher McCabe

- arXiv:1512.00460, JCAP —
- arXiv:1606.09243, PRD —

6th APS meeting, Château de la Tour, Gouvieux, France - 31st August 2016

Outline

- Motivation
- Thing 1:
 Supernova neutrino detection
- Thing 2:
 DM exciting the xenon nucleus

Motivation

Xenon dark matter direct detectors are:

- getting bigger (x 100)
- becoming quieter (background x 0.01)
- better understood (calibrated to ~ 0.1 keV)

Xenon detectors are good at everything

Significant improvements for standard DM...But what else?

Outline

- Motivation
- Thing 1:
 Supernova neutrino detection
- Thing 2:
 DM exciting the xenon nucleus

Xenon WIMP detectors

Dual-phase xenon as *dark matter* detectors

Interaction: unknown

From kinematics:
$$E_{\rm R} \sim 2.4 \, \mathrm{keV} \left(\frac{m_{\rm DM}}{5 \, \mathrm{GeV}} \right)^2$$

Dual-phase xenon as supernova neutrino detectors

Interaction: neutral current (Z-exchange)

From kinematics:
$$E_{\rm R} \sim 2.4 \, \mathrm{keV} \left(\frac{E_{\nu}}{12 \, \mathrm{MeV}} \right)^2$$

Neutrino signal similar to low-mass dark matter signal

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky

A neutral-current detector:

- 1. gains from a coherence factor: the cross-section is proportional to (neutron-number)²
- 2. responds to all types of neutrinos equally
- 3. responds to neutrinos in a known way so that the incoming neutrino spectrum may be inferred

PHYSICAL REVIEW D 68, 023005 (2003)

Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector

C. J. Horowitz* K. J. Coakley D. N. McKinsey

"Elastic scattering detectors can have yields of a few or more neutrino events per tonne for a supernova at 10 kpc"

"Elastic scattering detectors can have yields of a few or more neutrino events per tonne for a supernova at 10 kpc"

Why is it timely to think about this? Tonne scale experiments are starting to run: commissioning: XENON1T (~ 2 t) in design/construction: XENONNT & LZ (~ 7 t) R&D/early plans: DARWIN (~ 40 t)

What physics can we do with these detectors?

- 1. Simulating the supernova neutrino signal in a dual-phase xenon detector
- Extracting information from:
- 2. the number of events
- 3. the shape of the spectral

1. Simulating the supernova neutrino signal in a dualphase xenon detector

Use results from four 1D simulations by the Garching group:

- Two progenitor masses (11 & 27 M_{Sun})
- Two equation of states (LS220 & Shen EoS)

 $\label{eq:27} \frac{M_{Sun}\,LS220}{M_{Sun}\,Shen}; \ 11\,M_{Sun}\,LS220; \ 11\,M_{Sun}\,Shen$

Use results from four 1D simulations by the Garching group:

- Two progenitor masses (11 & 27 M_{Sun})
- Two equation of states (LS220 & Shen EoS)

 $27 \ M_{Sun} \ LS220; \ \ 27 \ M_{Sun} \ Shen; \ \ 11 \ M_{Sun} \ LS220; \ \ 11 \ M_{Sun} \ Shen$

Use results from four 1D simulations by the Garching group:

- Two progenitor masses (11 & 27 M_{Sun})
- Two equation of states (LS220 & Shen EoS)

 $27 \ M_{Sun} \ LS220; \ \ 27 \ M_{Sun} \ Shen; \ \ 11 \ M_{Sun} \ LS220; \ \ 11 \ M_{Sun} \ Shen$

Use results from four 1D simulations by the Garching group:

- Two progenitor masses (11 & 27 M_{Sun})
- Two equation of states (LS220 & Shen EoS)

 $27 \ M_{Sun} \ LS220; \ \ 27 \ M_{Sun} \ Shen; \ \ 11 \ M_{Sun} \ LS220; \ \ 11 \ M_{Sun} \ Shen$

Signal simulation

- Detectors calibrated to low energy (0.7 keV)
- Use LUX light and charge yields:

S2 only analysis

- Advantage: higher event rate
- 'Disadvantages': no background discrimination...
 ...but not an issue for this signal:
 - Signal is short (<10 seconds)
 - Background rate small compared to signal

Background estimate: XENON10: 2.3×10⁻² events/tonne/s ar> XENON100: 1.4×10⁻² events/tonne/s ar>

arXiv:1104.3088 arXiv:1605.06262

signal: 1-2.5 events/tonne/s (40-100 x background)

Extracting information from: *2. the number of events*

XENON1T :
$$35.2 \left(\frac{10 \text{ kpc}}{d}\right)^2$$
 events
XENONnT/LZ : $123 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events
DARWIN : $704 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events

XENON1T :
$$26.6 \left(\frac{10 \text{ kpc}}{d}\right)^2$$
 events
XENONnT/LZ : $93.1 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events
DARWIN : $532 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events

XENON1T :
$$18.8 \left(\frac{10 \text{ kpc}}{d}\right)^2$$
 events
XENONnT/LZ : $65.8 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events
DARWIN : $376 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events

XENON1T :
$$14.4 \left(\frac{10 \text{ kpc}}{d}\right)^2$$
 events
XENONnT/LZ : $50.4 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events
DARWIN : $288 \left(\frac{10 \text{ kpc}}{d}\right)^2$ events

See also: Chakraborty et al 1309.4492

Distinguishing the phases of the (10 kpc) supernova neutrino emission

- Clear differentiation of phase with DARWIN
- Partial differential with XENONnT/LZ but none with XENON1T

Extracting information from: *3. the shape of the spectral*

- Use S2 spectral information to constrain the neutrino flux
- Flux parameterisation ansatz (motivated from simulations): Keil et al 0208035

$$A_T \xi_T \left(\frac{E_\nu}{\langle E_T \rangle}\right)^{\alpha_T} \exp\left(\frac{-(1+\alpha_T)E_\nu}{\langle E_T \rangle}\right)$$
 with $\alpha_T = 2.3$, $\langle E_T \rangle$, A_T determined from fit

- Use S2 spectral information to constrain the total neutrino energy
- Flux parameterisation ansatz (motivated from simulations): Keil et al 0208035

$$A_T \xi_T \left(\frac{E_\nu}{\langle E_T \rangle}\right)^{\alpha_T} \exp\left(\frac{-(1+\alpha_T)E_\nu}{\langle E_T \rangle}\right)$$
 with $\alpha_T = 2.3$, $\langle E_T \rangle$, A_T determined from fit

Supernova 27 M_{Sun}, LS220 EoS; $0 \le t_{pb} \le 7[s]$ precision at 10 kpc: 1σ intervals $\sim 5\%$ DARWIN (40t) Mock Experiments Excellent reconstruction with DARWIN XENONnT/LZ (7t) $\sim 10\%$ XENON1T also good XENON1T (2t) $\sim 20\%$ **--** true value 2 0 3 5 Δ Total Energy Emitted Into Neutrinos [10⁵³ erg]

For a SN at 10 kpc from Earth:

(Recall: SN at 2.2 kpc in XENON1T = SN at 10 kpc in DARWIN)

	High significance discovery	Light curve reconstruction	Total nu-energy reconstruction	nu-spectrum reconstruction
XENON1T (2t)		X	\sim	\sim
XENONnT/LZ (7t)	~	~ 🗡	~ 🗸	~ 🗸
DARWIN (40t)	~	\checkmark		\checkmark

 Unique-selling-point: sensitive to all neutrino flavours (not the case for IceCube, DUNE etc)

Outline

- Motivation
- Thing 1:
 Supernova neutrino detection
- Thing 2:
 DM exciting the xenon nucleus

Motivation

Example: reconstruction in the usual SI-SD-mass plane

A single experiment cannot determine all the WIMP couplings, a combination of various targets is necessary.

An old idea...

• The original direct detection paper:

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

Aside from the detector proposed in Ref. 5, an interesting possibility is to detect dark-matter particles via inelastic rather than elastic scattering from nuclei.

Outline

1. What is it?

2. Why is it interesting?

3. Can it ever be detected?

What is it?

Two isotopes are good candidates:

Previous studies

Previous searches with single phase-detectors:

Limits on WIMP-¹²⁹Xe inelastic scattering

P. Belli^a, R. Bernabei^a, V. Landoni^a, F. Montecchia^a, W. Di Nicolantonio^b, A. Incicchitti^b, D. Prosperi^b, C. Bacci^c, D.J. Dai^d

^a Dipartimento di Fisica, Universitá di Roma "Tor Vergata" and INFN, sez. Roma2, Rome, Italy
 ^b Dipartimento di Fisca, Universitá di Roma "La Sapienza" and INFN, sez. Roma, Rome, Italy
 ^c Dipartimento di Fisica, Universitá di Roma III and INFN, sez. Roma, Rome, Italy
 ^d IHEP, Chinese Academy, P.O. Box 918/3, Beijing 100039, China

Received 20 May 1996; revised manuscript received 27 June 1996

Prog. Theor. Exp. Phys. 2014, 063C01 (11 pages) DOI: 10.1093/ptep/ptu064

Search for inelastic WIMP nucleus scattering on ¹²⁹Xe in data from the XMASS-I experiment

No limits/studies for two-phase detectors (LUX, XENON)

Outline

- 1. What is it?
 - Excite nucleus: measure recoil + photon
- 2. Why is it interesting?

3. Can it ever be detected?

Tells us about the dark matter-quark interaction Inelastic scattering is not A² enhanced

***** Only measurable for spin-dependent interactions

Elastic and inelastic scattering rates comparable

Baudis et al 1309.0825 Vietze et al 1412.6091

• Rate depends on the structure functions (SF)

$$\frac{d\sigma}{dE_{\rm R}} \propto S_A^n = \left| \langle {\rm Xe}^* | \bar{\psi}_q \gamma_\mu \gamma^5 \psi_q | {\rm Xe} \rangle \right|^2$$

 Inelastic SF factor ~10 smaller than elastic SF

Naive estimate: after discovery, need a detector at least ~10 times larger to detect inelastic signal

Rate depends on the structure functions (SF)

***** Only measurable for spin-dependent interactions

Outline

- 1. What is it?
 - Excite nucleus: measure recoil + photon
- 2. Why is it interesting?
 - Discriminate between SI and SD interactions
- 3. Can it ever be detected?

Spin dependent signal rates

• Rate as a function recoil energy (not directly measured)

Inelastic rate smaller by factor ~10-100
 Always see an elastic signal first

Background spectra expected in LZ/XENONnT:

• 2-neutrino – 2-beta decay of ¹³⁶Xe dominates above 20 keV

• Express the signal in terms of measured quantities:

g_1 , g_2 and drift field are the crucial parameters

I'll consider two benchmark scenarios:

Model of photon & electron numbers based on NEST

Szydagis et al 1106.1613 Lenardo et al 1412.4417

Reminder: Usual signal plane

• Signal region at *higher values* of S1

- Large backgrounds...some signal-to-background discrimination
- Better discrimination for higher drift fields

Discovery limit

Smallest cross-section for a discovery: XENONnT/LZ exposure

Discovery limit

Compare discovery limit with current constraints (elastic scatters)

Discovery limit

Compare discovery limit with current/future (elastic) constraints

Detectable if XENON1T make (elastic) discovery in next run

Discovery limit for DARWIN exposure

Detectable if XENON1T make (elastic) discovery in next run

Outline

- 1. What is it?
 - Excite nucleus: measure recoil + photon
- 2. Why is it interesting?
 - Discriminate between SI and SD interactions
- 3. Can it ever be detected?
 - Yes

- Dark matter can excite the ¹²⁹Xe and ¹³¹Xe isotopes
 - signal will help to distinguish spin-independent and spindependent interactions
- Signal is always smaller than elastic rate
 - Could it be detected?

Yes!

Requires an (elastic scattering) discovery signal in XENON1T

New things to do with lots of xenon

- Thing 1:
 Supernova neutrino detection
- Thing 2:
 DM exciting the xenon nucleus

