Pheno 2016 University of Pittsburgh – May 9, 2016 Top quark production in CMS

- Introduction and dataset (2.2 fb⁻¹ at 13 TeV)
- Dilepton channel
 - eµ inclusive cross section
 - Differential cross section (ee, eμ, μμ)
- Lepton plus jets channel
 - Differential cross section
- Comparison with ATLAS and theory
- Evidence for tt in association with a Z boson
- Single top t-channel cross section
- Conclusions

Arán García-Bellido On behalf of the CMS Collaboration

Introduction to top quarks at CMS

- Measuring top quark cross sections is important at 13 TeV:
 - Precision tests of QCD calculations
 - tt is a background in almost all other analyses (SUSY, ttH, etc...)
 - Can use to measure $m_t^{}$, $\alpha_s^{}$, calibrate b-tagging
 - Sensitive to BSM physics
- All analyses shown here use 2.2 fb⁻¹ good quality data (2015)
- tt MC (NLO): Powheg(v2)+Pythia8, NNPDF3.0, m_t=172.5 GeV
 - Alternative with MG5_aMC@NLO, Madgraph5, Powheg+Herwig

$$\sigma_{t\bar{t}} = 832^{+20}_{-29} (\text{scale}) \pm 35 (\text{PDF} + \alpha_{s}) \text{ pb}$$

- Singletop tW (71pb), t-channel (217pb): Powheg, aMC@NLO+Pythia
- Main backgrounds:
 - W+jets, Z+jets: MG5_aMC@NLO + Pythia
 - QCD multijet, Diboson: Pythia8 (and from data)

A. Garcia-Bellido (Rochester)

Inclusive eµ cross section

- Trigger: dilepton (eµ) trigger
- Event selection:
 - solated OS eµ pair, p_T >20 GeV, $|\eta|$ <2.4
 - ≥2 jets, p_T>30 GeV, |η|<2.4</p>
 - ≥1 b-tag: $ε_b \sim 67\%$, $ε_{qg} \sim 1\%$, $ε_c \sim 15\%$
 - m_{eμ} > 20 GeV
- Background estimation:
 - DY normalized to MC prediction by a data/MC SF from Z peak in data
 - Non-W/Z from SS control region
 - Single top, diboson from MC
- Cut and Count

$$\sigma_{t\bar{t}} = \frac{N_{\text{data}} - N_{\text{bkg}}}{\varepsilon A \mathcal{L}}$$

PAS TOP 16-005

	Number of
Source	$e^{\pm}\mu^{\mp}$ events
Drell–Yan	$24\pm9\pm4$
Non-W/Z leptons	$109\pm50\pm33$
Single top quark	$463\pm 6\pm 145$
VV	$15\pm2\pm5$
tī V	$31\pm1\pm10$
Total background	$642\pm52\pm149$
<mark>8%</mark> tt̄ dilepton signal	$10199 \pm 14 \pm 462$
Data	10368

A. Garcia-Bellido (Rochester)

Top production in CMS

9

Kinematic distributions

A. Garcia-Bellido (Rochester)

eµ inclusive cross section results

Source	$\Delta \sigma_{t\bar{t}}$ (pb)	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ (%)
Data statistics	8.3	1.0
Trigger efficiencies	9.7	1.2
Lepton efficiencies	18.4	2.3
Lepton energy scale	0.3	0.04
Jet energy scale	17.0	2.2
Jet energy resolution	0.8	0.1
b tagging	11.0	1.4
Mistagging	0.5	0.06
Pileup	1.5	0.2
Single top quark	11.8	1.5
VV	0.4	0.06
Drell–Yan	0.3	0.04
Non-W/Z leptons	2.7	0.3
tī V	0.8	0.1
PDF	4.8	0.6
Scale (μ_F and μ_R)	0.8	0.1
Parton shower scale	6.4	0.8
t ī NLO generator	16.8	2.1
tt hadronization	10.2	1.3
Total systematic (no integrated luminosity)	38.0	4.8
Integrated luminosity	21.4	2.7
Total	44.4	5.6

- Luminosity uncertainty dominates
- Still room to improve calibrations, efficiencies

 $\sigma_{t\bar{t}} = 793 \pm 8 \text{ (stat)} \pm 38 \text{ (syst)} \pm 21 \text{ (lumi) pb}$ Values for m_t=172.5 GeV. For m_t=173.34 GeV $\sigma_{t\bar{t}}$ decreases by ~0.7%. Relative error of 5.6% (was 3.9% for 20 fb⁻¹ 8 TeV data)

A. Garcia-Bellido (Rochester)

$t\bar{t} \rightarrow ev_e b\mu v_\mu b$ candidate event

A. Garcia-Bellido (Rochester)

Dilepton differential cross section

- Trigger on isolated dileptons and *ll*+jets topologies
- Event selection (ee, eμ, μμ)
 - Isolated OS leptons: p_T >20 GeV, $|\eta|$ <2.4
 - ≥2 jets: p_T>30 GeV, |η|<2.4</p>
 - \geq 1 b-tag jet (CSV): $\epsilon_{b} \approx 85\%$; $\epsilon_{qg} \approx 10\%$
 - m_{ℓℓ}>20 GeV
 - ee, $\mu\mu$: MET>40GeV and |91-m_{ll}|>15GeV</sub>
- Same background estimations as inclusive σ
- Kinematic reconstruction (94% efficient)
 - Constraints: $m_t = 172.5 \text{ GeV} (x2)$, $m_w = 80.4 \text{ GeV} (x2)$, $(p_v + p_{\overline{v}})_T = \text{MET}$
 - Reconstruct each event 100 times, smearing inputs by their resolution
 - Consider weighted average
 - Derive scale factor ε_{DATA}/ε_{MC}

PAS TOP

6-()

A. Garcia-Bellido (Rochester)

Dilepton differential results

- Calculate normalized differential cross sections to reduce systematics
- Perform regularized unfolding to parton level
- Good agreement overall with beyond NLO QCD calculations

Differential *l*+jets cross section

- Triggers based on single isolated lepton
- Event selection:
 - 1 isolated lepton with $p_T > 30$ GeV, $|\eta| < 2.1$
 - ≥4 jets with p_{τ} >25 GeV, $|\eta|$ <2.4
 - ≥ 1 b-tagged ($\epsilon_{b} \approx 65\%$; $\epsilon_{qg} \approx 3\%$)
 - b-tag jet and leading non-b jet: $p_T > 35$ GeV

Unfold to parton level and to particle level

- Kinematic reconstruction
 - Use mass constraints of m_t, m_w on leptonic side to obtain neutrino momentum (NIM 736, 169 [2014]) and correct b-jet on leptonic side
 - Calculate probability λ_m according to 2D mass distributions of m_t , m_w on hadronic side to obtain best permutation of jets
 - Cut -log(λ_m)<10
 - Correct tt reconstruction efficiency: 63% on average, 80% for 4jet, ~40% for 7jet events

Kinematic distributions

tt normalized to NNLO+NNLL cross section

Backgrounds from MC simulations (50% syst. on their normalization)

A. Garcia-Bellido (Rochester)

Top production in CMS

Parton level distributions *l*+jets

- Unfolded and extrapolated to full phase space
- Binning optimized to have similar number of events per bin
- $p_{T}(t)$ still a bit too hard: Powheg+Pythia6 was harder in previous 8 TeV results
- $p_{T}(t\bar{t})$ better described by Powheg than MG5_aMC@NLO or Madgraph (+ \leq 3 jets)

A. Garcia-Bellido (Rochester)

Top production in CMS

l+jets differential cross section Main uncertainties

source

- Particle level calculations avoid theoretical extrapolations to full phase space → smaller uncertainties
- ► Top proxy: l (including radiative losses), v not from hadrons, stable particles clustered in $\Delta R=0.4$ jets, b-jets contain b-hadrons (unstable), with p→0

statistical uncertainty1–5b tagging2–3jet energy scale5–7NLO generator1–6parton shower scale1–5

 $K^{2} = [M(p_{N} + p_{l} + p_{b_{1}}) - m_{t}]^{2} + [M(p_{j_{1}} + p_{j_{2}}) - m_{W}]^{2} + [M(p_{j_{1}} + p_{j_{2}} + p_{j_{3}}) - m_{t}]^{2}$ POWHEG + PYTHIA8 vs. HERWIG++

 $\sigma_{t\bar{t}} = 836 \pm 27 \text{ (stat)} \pm 84 \text{ (sys)} \pm 100 \text{ (lumi)} \text{ pb } [43 \text{ pb}^{-1}]$

Values for m₊=172.5 GeV. Slope: -6.3 pb/GeV

A. Garcia-Bellido (Rochester)

Top production in CMS

parton [%]

1-5

2-3

6-8

1 - 10

2 - 9

1 - 12

particle [%]

< 3

$\sigma_{\rm t\bar{t}}$ comparison with ATLAS and theory

- New measurements at 13 TeV are in agreement between each other and the NNLO+NLL prediction
- Now working on reducing systematic uncertainties
 - Hadronization, PS, modelling, JES, b-tagging, efficiencies

Single top t-channel cross section

Event selection

- 1 isolated μ , $p_T > 22$ GeV, $|\eta| < 2.1$
- 2 jets, p_T>40 GeV, |η|<4.7</p>
- 1 b-tag (MVA) (ε_b≈45% ; ε_{qg}≈0.1%)
- W+jets from simulation, validated outside top mass window: 130<m_{lvb}<225 GeV</p>
- QCD shape from data, normalization from fit of m_T(W) in SB and cut: m_T(W)>50 GeV
- 2j1t is the signal region, use 3j1t and 3j2t to constrain tt

Use 11 variables combined in MVA

Process	μ^+	μ^-
Top (tt and tW)	7048 ± 13	7056 ± 13
W+jets and Z+jets	3039 ± 102	2399 ± 90
QCD multijet	241±121	219 ± 110
Single top <i>t</i> -channel	1539±13	977±10
Total expected	11867 ± 159	10651 ± 143
Data	11877	11017

PAS TOP 16-003

A. Garcia-Bellido (Rochester)

t-channel results

Fit MVA output for μ^+ , μ^- and inclusive

- Bkg norm. constrained (10% tt, 30% EW, 50% QCD from prediction)
- Ratio $\sigma_t / \sigma_{\bar{t}} = 1.75 \pm 0.16 (stat) \pm 0.21 (syst)$

15% overall unc., 12% modeling, 6% exp.

 $\sigma_{t} = 228 \pm 9(st) \pm 14(ex) \pm 29(th) \pm 6.2(lum) \text{ pb}$

 $\sigma_t = 217.0 \pm 6.6(\text{scale}) \pm 6.2(\text{PDF}) \text{ pb [NLO]}$ NNLO available: 214.5 ± 0.6 [PLB 736, 58 (2014)] $|\text{fV}_{tb}| = 1.02 \pm 0.07(\text{exp}) \pm 0.02(\text{th})$

A. Garcia-Bellido (Rochester)

Conclusions

- Robust measurements with early Run II data
- Results are overall in good agreement with theory and ATLAS
 - No signature of new physics yet!
- Dilepton analyses lead in precision: 5.6%
- Will focus now on reducing systematics
 - Better understanding of JES, trigger, and btagging
 - Constrain hadronization, PS, modelling
- Single top entering new era of differential measurements and properties
- More papers coming with new tools: boosted top tagging, pile-up cleaning algorithms, more channels, new fitting techniques

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

A. Garcia-Bellido (Rochester)