SUSY searches in photon final states with the CMS detector

Knut Kiesel for the CMS Collaboration

9-11 May 2016

Pheno2016: Forging new physics
University of Pittsburgh

1. Physikalisches Institut B

[Logo of CMS]

[Logo of RWTH Aachen University]
Motivation

Gauge Mediated Supersymmetry Breaking (GMSB)

- Gravitino \tilde{G} is lightest SUSY particle
- Assume neutralino $\tilde{\chi}_1^0$ is next-to-lightest SUSY particle
- $\tilde{\chi}_1^0$ decays to massless \tilde{G} and a neutral SM boson
- Assume R-parity conservation: \tilde{G} stable, SUSY pair production

$\tilde{\chi}_1^0$ decays

Bino/Wino:
- Decay to γ or Z
- Branching fraction mass dependent

$$BF(\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}) \xrightarrow{m \rightarrow \infty}$$

$$\begin{cases}
\cos^2 \theta_W & \text{Bino} \\
\cos^2 \theta_W & \text{Wino}
\end{cases}$$

Higgsino:
- Decay to H (use di-γ decay to tag H)

Interpretation

General Gauge Mediation (GGM):
- Natural decay probabilities
- Mixture of different processes
- Closer to reality

Simplified models:
- Branching fractions set to fixed value (usually 100%)
- Simulate only one production model
- Easier to reinterpret
Overview

- Variety of analyses probing many SUSY processes with different analysis strategies
- Covering bino, wino and higgsino neutralino mixtures
- Search for third generation, strong and electroweak production
- Full 2012 dataset (8 TeV) and first results for 13 TeV are published

<table>
<thead>
<tr>
<th>Signature</th>
<th>Publication links</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS-SUS-13-014 $H\rightarrow\gamma\gamma + \text{bb} + E_T^{\text{miss}}$</td>
<td>PRL 112 (2014) 161802</td>
</tr>
<tr>
<td>CMS-SUS-14-004 $\gamma + \text{jets} + E_T^{\text{miss}}$</td>
<td>PRD 92 (2015) 072006</td>
</tr>
<tr>
<td>CMS-SUS-14-008 $\gamma\gamma + \text{Razor}$</td>
<td>PRD 92 (2015) 072006</td>
</tr>
<tr>
<td>CMS-SUS-14-009 $\gamma\gamma/e^\pm\mu^\mp + \text{jets}, E_T^{\text{miss}}$ inclusive</td>
<td>PLB 743 (2015) 503</td>
</tr>
<tr>
<td>CMS-SUS-14-013 $\gamma + e/\mu + E_T^{\text{miss}}$</td>
<td>PLB 757 (2016) 6</td>
</tr>
<tr>
<td>CMS-SUS-14-016 $\gamma + E_T^{\text{miss}}$</td>
<td>Submitted to PLB (arxiv:1602.08772)</td>
</tr>
<tr>
<td>CMS-SUS-14-017 $H\rightarrow\gamma\gamma + \text{Razor}$</td>
<td>CDS:2047472</td>
</tr>
<tr>
<td>CMS-SUS-15-012 $\gamma\gamma + E_T^{\text{miss}}$ (13 TeV)</td>
<td>CDS:2143897</td>
</tr>
</tbody>
</table>

See next talk by Arka Santra after the coffee break
Common background estimation for electrons being misidentified as photons

Method

Use pixel hits to distinguish between photons and electrons

- Calculate the probability that a real electron does not leave hits in the pixel detector
- Use tag&probe method on the $Z \rightarrow ee$ resonance to find real electrons
 \[f_{e \rightarrow \gamma} \approx 1.5\% \]

Usage in the analysis:

- Select event similar to the signal selection, except that the photon object has hits in the pixel detector (electron control sample)
- Scale this sample using the misreconstruction probability

⇒ Use this sample as prediction for electrons misreconstructed as photons

Validate the method using simulation

- Apply the same methods to simulation
- Compare to generated electrons reconstructed as photons
- Good agreement, method works well

Events / GeV

<table>
<thead>
<tr>
<th>Events / GeV</th>
<th>Sim. / Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-10</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Simulation CMS (8 TeV)

-19.7 fb$^{-1}$ (8 TeV)

≥ 1 γ, ≥ 2 jets

SUS-14-004

Knut Kiesel

γ SUSY searches at CMS
SUS-14-004: $\gamma + \text{jets} + E_T^{\text{miss}}$

Selection
- $\geq 1\gamma$, $p_T^{*} > 110$ GeV
- $H_T > 500$ GeV, $\geq 2\text{jets}$
- no e/\mu
- $E_T^{\text{miss}} > 100$ GeV

Z\gamma, W\gamma, t\bar{t}\gamma$ background

Use MadGraph simulation, scaled to NLO cross section using MCFM

Multijet and γ+Jet background
- Select control sample with unisolated photon candidates (jets) instead of photons
- Normalize in $E_T^{\text{miss}} < 100$ GeV to photon (signal) selection
- Do this in bins of H_T and the hadronic recoil to minimize correlations

Validation of the multijet background estimation method

- Data
- Prediction $\pm \sigma_{\text{total}}$ $\pm \sigma_{\text{syst}}$ $\pm \sigma_{\text{stat}}$

Right: Data to background comparison

- CMS Simulation
 - Multijet, γ+jet
 - Direct simulation
 - $\geq 1\gamma$, ≥ 2 jets

- CMS
 - Data
 - Prediction $\pm \sigma_{\text{total}}$
 - $\pm \sigma_{\text{syst}}$ $\pm \sigma_{\text{stat}}$
 - Multijet (+γ)
 - $Z\gamma, W\gamma, t\bar{t}\gamma$
 - EW $e\rightarrow\gamma$
 - GGMwino $m_{\tilde{v}}=1700$ GeV
 - GGMwino $m_{\tilde{v}}=720$ GeV
SUS-14-004: $\gamma + \text{jets} + E_T^{\text{miss}}$: Interpretation

GGM

Squark or gluino production, $\tilde{\chi}_1^0$ decay depends on mixing

- $\bar{g} \to \tilde{\chi}_1^0 \tilde{\chi}_{10}^- q$ (mSUGRA)
- $\bar{g} \to \tilde{\chi}_2^0 \tilde{\chi}_1^0 q$ (NMSSM)

Simplified model

Gluino production, $BF(\tilde{g} \to qq\tilde{\chi}_1^0) = 100/50\%$

- $\tilde{g} \to \tilde{\chi}_2^0 \tilde{\chi}_1^- q$ (mSUGRA)
- $\tilde{g} \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 q$ (NMSSM)
SUS-14-013: $\gamma + e/\mu + E_T^{\text{miss}}$

Selection
- $\geq 1\gamma$, $p_T > 40$ GeV
- $\geq 1e/\mu$, $p_T > 25$ GeV
- $\Delta R(\gamma, \ell) > 0.8$
- $|m_{e\gamma} - m_Z| > 10$ GeV
- $E_T^{\text{miss}} > 120$ GeV
- $M_T(\gamma, E_T^{\text{miss}}) > 100$ GeV

Jets misreconstructed as photons
- Fit two templates to distribution of photon-shower width to data with low E_T^{miss}
 - Real-photon template: Select real photons with $m_{\mu\mu\gamma} \approx m_Z$
 - Fake-photon template: Unisolated photon candidates
- $f_{\text{jet} \rightarrow \gamma} = 0.08 - 0.25$
- Prediction: Scale control sample with unisolated photons using this factor

Misidentified leptons and electroweak processes
- Fit two templates to distribution of $\Delta \Phi(\ell, E_T^{\text{miss}})$ to data with medium E_T^{miss}
 - Misidentified lepton template: Inverted lepton isolation for leptons (red dashed line)
 - Electroweak process template: Simulation (blue dashed line)
Data to background comparison:

19.7 fb$^{-1}$ (8 TeV)

- CMS
 - $E_T^{\text{miss}} > 120$ GeV, $M_T > 100$ GeV

Interpreted in bins of H_T, E_T^{miss} and p_T^γ

\begin{align*}
\text{Simplified model of } \tilde{\chi}^0_1 \tilde{\chi}^\pm_0 \text{ production} \\
\text{GGM model with gluino and electroweak production}
\end{align*}
SUS-14-016: $\gamma + E_T^{\text{miss}}$

Selection

- $\geq 1\gamma$, $p_T > 40$ GeV
- $E_T^{\text{miss}} > 100$ GeV
- $M_T > 300$ GeV
- $E_T^{\text{miss,signif}} > 80$ (low for events with large particle uncertainties and therefore prone to mismeasurement)

Major backgrounds

- $\gamma + \text{Jet}$
- $V\gamma = W\gamma$, $Z(\nu\nu)\gamma$, $t\bar{t}\gamma$

Scale background simulation to data in control region, extrapolate to signal region

Diboson/$t\bar{t}\gamma$ background

Direct simulation

Divide signal region in low/high E_T^{miss} / S_T to increase sensitivity

$$S_T = E_T^{\text{miss}} + p_T^{\gamma}$$

$$M_T(\text{GeV})$$

Signal region:

- $E_T^{\text{miss,signif}}$
- 100 to 300 GeV

Control region:

- 10 to 80 GeV

Events / bin

7.4 fb$^{-1}$ (8 TeV), $\geq 1\gamma + \text{MET}$

Data / bkg

$\sigma = \sigma^{\text{stat}} + \sigma^{\text{syst}}$

Knut Kiesel

γ SUSY searches at CMS
Mixed $\tilde{\chi}_1^0 \tilde{\chi}^\pm$ and $\tilde{\chi}^\pm \tilde{\chi}^\pm$ production, where $\tilde{\chi}_1^0$ and $\tilde{\chi}^\pm$ are mass degenerate

Same model as $\gamma + e/\mu$ analysis

Dominant process for GGM, but also other $\tilde{\chi}_1^0$ production allowed

Very sensitive to electroweak production
Selection

- $\geq 2\gamma$, $p_T > 40(25)\ \text{GeV}$
- $m_{\gamma\gamma} \approx m_H$
- $\geq 1\ \text{jet}$
- Razor variables (M_R, R): Discriminates SM versus pair-produced heavy particles
- Categorization according to:

 - $P_T^{YY} > 110\ \text{GeV}$: HighPt Box
 - $110 < m_{bb} < 140\ \text{GeV}$: Hbb Box
 - $76 < m_{bb} < 106\ \text{GeV}$: Zbb Box
 - $2\gamma; \sigma_B/E < 1.5\%$: HighRes Box
 - No: LowRes Box

Background estimation for each category

Combinatorics:

- Fit exponential in sideband above and below the expected $H \rightarrow \gamma\gamma$ peak (M_R, R inclusive)
- Extrapolate from sidebands to $H \rightarrow \gamma\gamma$ peak in high M_R, R

SM H from simulation
Summary

Status at 8 TeV

- Searched for SUSY with final states containing photons
- Studied bino-, wino- and higgsino-like neutralino mixtures
- Interpretation in GMSB and simplified models
- No hint for SUSY found yet

Are there photons at the end of the tunnel?

- Cross section for heavy (SUSY) particles increases significantly with \sqrt{s}
- With this years data, sensitive increases especially for high sparticle masses
Razor variables

The variable M_R is defined as

$$M_R \equiv \sqrt{\left(\left| \vec{p}^{j_1} \right| + \left| \vec{p}^{j_2} \right| \right)^2 - \left(p^{j_1}_z + p^{j_2}_z \right)^2},$$

(1)

where \vec{p}^{j_i} and $p^{j_i}_z$ are, respectively, the momentum of the ith megajet and the magnitude of its component along the beam axis. The p_T imbalance in the event is quantified by the variable M^R_T, defined as

$$M^R_T \equiv \sqrt{E_{T\text{miss}}^{\text{miss}} \left(\left| \vec{p}^{j_1}_T \right| + \left| \vec{p}^{j_2}_T \right| \right) - \vec{p}_{T\text{miss}} \cdot (\vec{p}^{j_1}_T + \vec{p}^{j_2}_T) / 2},$$

(2)

where $\vec{p}^{j_i}_T$ is the transverse component of \vec{p}^{j_i}. The razor ratio R is defined as

$$R \equiv \frac{M^R_T}{M_R}.$$
Selection

- $\geq 2\gamma, p_T > 40(25)\text{ GeV}$
- $m_{\gamma\gamma} \approx m_H$
- ≥ 2 b-tagged jets
- bins in E_{T}^{miss}

In each category (i), (ii) and (iii):

Background

- Fit sidebands above and below $H \rightarrow \gamma\gamma$ peak
- Use events from sideband to predict E_{T}^{miss}

Graphs

- CMS, $\sqrt{s} = 8$ TeV, $\int L \, dt = 19.7 \text{ fb}^{-1}$

Observed 95% Cross Section Exclusion (pb)

<table>
<thead>
<tr>
<th>m_{χ} (GeV)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ (pb)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Natural GMSB Higgsino model

- $\text{Br}(\chi^0_{i} \rightarrow \gamma\gamma) = 1$, Strong and EW Production
- $m_{\chi^0_i} = m_{\chi_{i}} - 5 \text{ GeV}$, $m_{\chi_1} = m_{\chi_2} + 5 \text{ GeV}$

Expected 95% CLs Limits

- Observed 95% CLs Limits
- Theory uncertainty
- Expected 95% CLs Limits
- Expected ±1σ experimental

Observational Data

- Data
- Background
- Signal (m_{χ}/m_{χ}): 350 / 135 GeV, 400 / 300 GeV, 300 / 290 GeV

Knut Kiesel

\(\gamma\) SUSY searches at CMS

3 / 4
Stealth SUSY

- New hidden sector at EWK scale
- Small mass splitting between \tilde{S} and S
 \Rightarrow LSP carries little momentum
 \Rightarrow low E_T^{miss}

Selection

- $\geq 2\gamma$, $p_T > 40(25)$ GeV
- $N_{\text{jets}} \geq 4$
- $S_T = \sum \gamma, e, \mu, \text{jet}, E_T^{\text{miss}} p_T > 1200$ GeV

Graphs showing cuts on signal and background regions.

 CMS

Graph showing observable vs. S_T with different cuts on N_{jets}.