SUSY searches in photon final states with the CMS detector

Knut Kiesel for the CMS Collaboration

9-11 May 2016

Pheno2016: Forging new physics University of Pittsburgh

1. Physikalisches Institut B

SPONSORED BY THE

Motivation

Gauge Mediated Supersymmetry Breaking (GMSB)

- $\bullet\,$ Gravitino $\widetilde{\mathrm{G}}$ is lightest SUSY particle
- Assume neutralino $\widetilde{\chi}_1^0$ is next-to-lightest SUSY particle
- $\widetilde{\chi}^0_1$ decays to massless $\widetilde{\mathrm{G}}$ and a neutral SM boson
- \bullet Assume R-parity conservation: $\widetilde{\mathrm{G}}$ stable, SUSY pair production

$\widetilde{\chi}_1^0$ decays

Bino/Wino:

- Decay to γ or Z
- Branching fraction mass dependent

 $\begin{array}{ccc} {\it BF}(\widetilde{\chi}_1^0 \to \gamma \widetilde{\mathrm{G}}) \stackrel{m \to \infty}{\longrightarrow} \\ \left\{ \begin{array}{c} \cos^2 \theta_{\mathsf{W}} & \mathsf{Bino} \\ \cos^2 \theta_{\mathsf{W}} & \mathsf{Wino} \end{array} \right. \end{array}$

Higgsino:

• Decay to H (use di- γ decay to tag H)

Interpretation

General Gauge Mediation (GGM):

- Natural decay probabilities
- Mixture of different processes
- Closer to reality

Simplified models:

- Branching fractions set to fixed value (usually 100%)
- Simulate only one production model
- Easier to reinterpret

Knut Kiesel

Overview

- Variety of analyses probing many SUSY processes with different analysis strategies
- Covering bino, wino and higgsino neutralino mixtures
- Search for third generation, strong and electroweak production
- Full 2012 dataset (8 TeV) and first results for 13 TeV are published

	Signature	Publication links
CMS-SUS-13-014	${\sf H}{ o}\gamma\gamma+{\sf bb}+{\it E}_{ m T}^{\sf miss}$	PRL 112 (2014) 161802
CMS-SUS-14-004	$\gamma + jets + \textit{E}_{\mathrm{T}}^{miss}$	PRD 92 (2015) 072006
CMS-SUS-14-008	$\gamma\gamma+Razor$	PRD 92 (2015) 072006
CMS-SUS-14-009	$\gamma\gamma/e^{\pm}\mu^{\mp}+$ jets, $\mathit{E}_{\mathrm{T}}^{miss}$ inclusive	PLB 743 (2015) 503
CMS-SUS-14-013	$\gamma + { m e}/\mu + {\it E}_{ m T}^{ m miss}$	PLB 757 (2016) 6
CMS-SUS-14-016	$\gamma + E_{ m T}^{ m miss}$	Submitted to PLB (arxiv:1602.08772)
CMS-SUS-14-017	$H \rightarrow \gamma \gamma + Razor$	CDS:2047472
CMS-SUS-15-012	$\gamma\gamma+{\it E}_{ m T}^{ m miss}$ (13 TeV)	CDS:2143897
	\downarrow See next talk by Arka Santra after the coffee break	

Common background estimation for electrons being misidentified as photons

Method

Use pixel hits to distinguish between photons and electrons

- Calculate the probability that a real electron does not leave hits in the pixel detector
- Use tag&probe method on the $Z{\rightarrow}ee$ resonance to find real electrons

$$f_{e
ightarrow\gamma}pprox 1.5\%$$

Usage in the analysis:

- Select event similar to the signal selection, except that the photon object has hits in the pixel detector (electron control sample)
- Scale this sample using the misreconstruction probability
- \Rightarrow Use this sample as prediction for electrons misreconstructed as photons

Validate the method using simulation

- Apply the same methods to simulation
- Compare to generated electrons reconstructed as photons
- Good agreement, method works well

SUS-14-004: γ + jets + $E_{\rm T}^{\rm miss}$

Selection

- $\geq 1\gamma$, $p_{
 m T}*>110\,{
 m GeV}$
- $H_{\rm T} >$ 500 GeV, \geq 2jets
- no e/ μ • $E_{ au}^{ ext{miss}} > 100 \, ext{GeV}$

Z γ , W γ , t $\overline{\mathrm{t}}\gamma$ background

Use $\rm MadGraph$ simulation, scaled to NLO cross section using MCFM

Multijet and γ +Jet background

- Select control sample with unisolated photon candidates (jets) instead of photons
- Normalize in $E_{\rm T}^{\rm miss} < 100\,{\rm GeV}$ to photon (signal) selection
- $\bullet\,$ Do this is bins of $H_{\rm T}$ and the hadronic recoil to minimize correlations

SUS-14-004: γ + jets + $E_{\rm T}^{\rm miss}$: Interpretation

SUS-14-013: $\gamma + e/\mu + E_{T}^{miss}$

Selection

- $\geq 1\gamma$, $p_{
 m T}>$ 40 GeV
- $ullet \geq 1 {
 m e}/\mu$, $p_{
 m T} > 25\,{
 m GeV}$

• $\Delta R(\gamma, \ell) > 0.8$ • $|m_{e\gamma} - m_Z| > 10 \,\text{GeV}$

- $E_{\rm T}^{\rm miss} > 120 \, {\rm GeV}$
- $M_T(\gamma, E_{\mathrm{T}}^{\mathrm{miss}}) > 100 \,\mathrm{GeV}$

Jets misreconstructed as photons

Fit two templates to distribution of photon-shower width to data with low $E_{\mathrm{T}}^{\mathrm{miss}}$

- Real-photon template: Select real photons with $m_{\mu\mu\gamma}pprox m_Z$
- Fake-photon template: Unisolated photon candidates

 $f_{\text{jet} \to \gamma} = 0.08 - 0.25$

Prediction: Scale control sample with unisolated photons using this factor

Misidentified leptons and electroweak processes

Fit two templates to distribution of $\Delta\Phi(\ell, {\cal E}_T^{miss})$ to data with medium ${\cal E}_T^{miss}$

- Misidentified lepton template: Inverted lepton isolation for leptons (red dashed line)
- Electroweak process template: Simulation (blue dashed line)

SUS-14-013: $\gamma + e/\mu + E_{T}^{miss}$: Results and interpretation

Data to background comparison:

CMS

8 / 12

SUS-14-016: $\gamma + E_{\mathrm{T}}^{\mathrm{miss}}$

SUS-14-016: $\gamma + E_{\rm T}^{\rm miss}$: Interpretation

Very sensitive to electroweak production

SUS-14-017: $H \rightarrow \gamma \gamma + Razor$

Selection

- $\geq 2\gamma$, $p_{
 m T}>$ 40(25) GeV
- $m_{\gamma\gamma} \approx m_H$
- $ullet \geq 1$ jet
- Razor variables (*M*_R, R): Discriminates SM versus pair-produced heavy particles
- Categorization according to:

Background estimation for each category

Combinatorics:

- Fit exponential in sideband above and below the expected $H \rightarrow \gamma \gamma$ peak ($M_{\rm R}, {\rm R}$ inclusive)
- Extrapolate from sidebands to $H \rightarrow \gamma \gamma$ peak in high $M_{\rm R}, {\rm R}$
- SM H from simulation

Summary

Status at 8 TeV

- Searched for SUSY with final states containing photons
- Studied bino-, wino- and higgsino-like neutralino mixtures
- Interpretation in GMSB and simplified models
- No hint for SUSY found yet

Are there photons at the end of the tunnel?

- Cross section for heavy (SUSY) particles increases significantly with \sqrt{s}
- With this years data, sensitive increases especially for high sparticle masses

BACKUP

The variable $M_{\rm R}$ is defined as

$$M_{\rm R} \equiv \sqrt{\left(|\vec{p}^{\,j_1}| + |\vec{p}^{\,j_2}|\right)^2 - \left(p_z^{j_1} + p_z^{j_2}\right)^2},\tag{1}$$

where $\vec{p}_{z}^{j_{i}}$ and $p_{z}^{j_{i}}$ are, respectively, the momentum of the *i*th megajet and the magnitude of its component along the beam axis. The p_{T} imbalance in the event is quantified by the variable M_{T}^{R} , defined as

$$M_{\rm T}^{\rm R} \equiv \sqrt{\frac{E_{\rm T}^{\rm miss} \left(|\vec{\rho}_{\rm T}^{\,j_1}| + |\vec{\rho}_{\rm T}^{\,j_2}| \right) - \vec{\rho}_{\rm T}^{\,\rm miss} \cdot \left(\vec{\rho}_{\rm T}^{\,j_1} + \vec{\rho}_{\rm T}^{\,j_2} \right)}{2},\tag{2}$$

where $\vec{p}_{\rm T}^{\,\,j_{\it i}}$ is the transverse component of $\vec{p}^{\,\,j_{\it i}}$. The razor ratio ${\rm R}$ is defined as

$$R \equiv \frac{M_{\rm T}^{\rm R}}{M_{\rm R}}.$$
(3)

SUS-13-014: $H \rightarrow \gamma \gamma + bb$

SUS-14-009: $\gamma\gamma$ + jets

