Mad-Maximizing Higgs Pair Analyses

arXiv: 1311.2591 (Plehn, Schichtel, Wiegand)
arXiv: 16xx.xxxx (FK, Plehn, Schichtel)

work with Tilman Plehn and Peter Schichtel

Felix Kling

THE UNIVERSITY OF ARIZONA
Fermilab

Pheno 2016
Introduction

- **2012**: LHC found Higgs
 - no new physics found (so far)
 - let’s analyze all its properties
Introduction

- **2012:** LHC found Higgs
 - no new physics found (so far)
 - let’s analyze all its properties

- **Higgs Potential:** \(V(\Phi) = -\mu \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 \)
Introduction

- **2012**: LHC found Higgs
 - no new physics found (so far)
 - let’s analyze all its properties
- **Higgs Potential**: \(V(\Phi) = -\mu \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 \)
 - not measured yet
Introduction

- **2012**: LHC found Higgs
 - no new physics found (so far)
 - let’s analyze all its properties

- **Higgs Potential**: \(V(\Phi) = -\mu \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 \)
 - not measured yet

- **Higgs Pair Production**:
 - \(\sigma(gg \rightarrow hh) = 34 \text{ fb} \) arXiv 1401.7340
 - \(bb\gamma\gamma \) most promising
Introduction

- **2012:** LHC found Higgs
 - no new physics found (so far)
 - let’s analyze all its properties

- **Higgs Potential:** \(V(\Phi) = -\mu \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 \)
 - not measured yet

- **Higgs Pair Production:**
 - \(\sigma(gg \rightarrow hh) = 34 \text{ fb} \)
 - \(bb\gamma\gamma \) most promising

- **Previous Studies:**
 - arXiv 0310056 (Baur et. al.)
 - Pre-LHC study
 - arXiv 1206.5001 (Dolan et. al.)
 - arXiv 1212.5581 (Baglio et. al.)
 - Cut based analysis
 - arXiv 1311.1931 (Barger et. al.)
 - First multivariate analysis
Introduction

- **2012**: LHC found Higgs
 - no new physics found (so far)
 - let’s analyze all its properties
- **Higgs Potential**: \[V(\Phi) = -\mu \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 \]
 - not measured yet
- **Higgs Pair Production**:
 - \(\sigma(gg \rightarrow hh) = 34 \text{ fb} \)
 - \(bb\gamma\gamma \) most promising

- **Previous Studies**:
 - arXiv 0310056 (Baur et. al.)
 - Pre-LHC study
 - arXiv 1206.5001 (Dolan et. al.)
 - arXiv 1212.5581 (Baglio et. al.)
 - Cut based analysis
 - arXiv 1311.1931 (Barger et. al.)
 - First multivariate analysis

How good can we be?

MadMax
MadMax

I bin

cut

B only
S+B
N_B, N_{S+B}

events

kin. variable

Felix Kling
Mad-Maximizing Higgs Pair Analyses
MadMax

I bin

events

kin. variable

cut

B only
S+B

N_B, N_{S+B}

likelihood distribution

gaussian

ρ

N_B, N_{S+B}, N_{cut}

Felix Kling

Mad-Maximizing Higgs Pair Analyses
MadMax

B only
S+B

events vs. kin. variable

likelihood distribution

gaussian

significance σ

N_{B}, N_{S+B}

ρ vs. N_{cut}

Felix Kling

Mad-Maximizing Higgs Pair Analyses

The University of Arizona
MadMax

likelihood distribution

\[\mathcal{N}_{S+B,i} \quad \mathcal{N}_{B,i} \]

\[\sigma^2 = \sum_{bins} \sigma_i^2 \]

Felix Kling

Mad-Maximizing Higgs Pair Analyses
The log-likelihood ratio q is the most powerful hypothesis test.

Neyman-Pearson

The log-likelihood ratio q is the most powerful hypothesis test.
The log-likelihood ratio q is the most powerful hypothesis test.

$$ q = \log \frac{L(\vec{x}|H_{S+B})}{L(\vec{x}|H_B)} $$
The log-likelihood ratio q is the most powerful hypothesis test.

Neyman-Pearson

The log-likelihood ratio q is the most powerful hypothesis test.

$$q = \log \frac{L(\bar{x}|H_{S+B})}{L(\bar{x}|H_B)}$$
Mad-Maximizing Higgs Pair Analyses

\[q = \log \frac{L(x|H_{S+B})}{L(x|H_B)} \]
- single event log-likelihood ratio

\[dq(x) = \log \frac{L(x|H_{S+B})}{L(x|H_B)} = -n_s + \log \left(1 + \frac{d\sigma_S(x)}{d\sigma_B(x)} \right) \]
- single event log-likelihood ratio

\[dq(x) = \log \frac{L(x|H_{S+B})}{L(x|H_B)} = -n_s + \log \left(1 + \frac{d\sigma_S(x)}{d\sigma_B(x)} \right) \]

- calculate distribution via Monte Carlo

- Modified version of MG5

see 1311.2591 or ask Peter Schichtel
MadMax

- single event log-likelihood ratio

\[dq(x) = \log \frac{L(x|H_{S+B})}{L(x|H_B)} = -n_s + \log \left(1 + \frac{d\sigma_S(x)}{d\sigma_B(x)}\right) \]

- calculate distribution via Monte Carlo

\[dq(x) = \log \frac{L(x|H_{S+B})}{L(x|H_B)} = \text{single event likelihood distribution} \]

\[dq_S dq_B \]

\[q = \log \frac{L(\vec{x}|H_{S+B})}{L(\vec{x}|H_B)} \]

Modified version of MG5

see 1311.2591 or ask Peter Schichtel

single event log-likelihood distribution

\[\frac{d\sigma_S}{dq} \quad \frac{d\sigma_B}{dq} \]
- single event log-likelihood ratio
\[
dq(x) = \log \frac{L(x|H_{S+B})}{L(x|H_B)} = -n_s + \log \left(1 + \frac{d\sigma_S(x)}{d\sigma_B(x)}\right)
\]

- calculate distribution via Monte Carlo

\[\text{Modified version of MG5} \quad \xrightarrow{\text{see 1311.2591 or ask Peter Schichtel}}\]

single event likelihood distribution
\[\frac{d\sigma_S}{dq}, \frac{d\sigma_B}{dq}\]

\[\text{LEPStat4LHC}\]

full probability distribution \[\rho_B(q), \rho_{S+B}(q)\]
- single event log-likelihood ratio

\[dq(x) = \log \frac{L(x|H_{S+B})}{L(x|H_B)} = -n_s + \log \left(1 + \frac{d\sigma_S(x)}{d\sigma_B(x)} \right) \]

- calculate distribution via Monte Carlo

→ Modified version of MG5

see 1311.2591 or ask Peter Schichtel

single event likelihood distribution

\[\frac{d\sigma_S}{dq} \quad \frac{d\sigma_B}{dq} \]

\[dq(x) = \log L(x|H_{S+B}) - \log L(x|H_B) = n_s + \log \left(1 + \frac{d\sigma_S(x)}{d\sigma_B(x)} \right) \]

- obtain maximum significance \(Z \)

\[\text{CL}(q^*) = \int_{q^*}^{\infty} dq' \rho_B(q') = \frac{1}{2} \left(1 - \text{erf} \left(\frac{Z}{\sqrt{2}} \right) \right) \]
Higgs Pairs

Signal: both box and triangle diagram

→ Higgs self coupling sensitive to λ

\[
g_{hhh} = \lambda v
\]
Higgs Pairs

Signal: both box and triangle diagram

→ Higgs self coupling sensitive to λ

Background:

<table>
<thead>
<tr>
<th>continuum</th>
<th>resonant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bb\gamma\gamma$</td>
<td>$ZH \rightarrow bb\gamma\gamma$</td>
</tr>
<tr>
<td>$bb_j\gamma$</td>
<td></td>
</tr>
<tr>
<td>$jj\gamma\gamma$</td>
<td></td>
</tr>
</tbody>
</table>
Higgs Pairs

Signal: both box and triangle diagram

- \rightarrow Higgs self coupling sensitive to λ

Background:

- continuum: $bb\gamma\gamma$, $bbj\gamma$, $jj\gamma$
- resonant: $ZH \rightarrow bb\gamma\gamma$

see 1603.06896 (CMS)
Higgs Pairs

Signal: both box and triangle diagram

\[\rightarrow \text{Higgs self coupling sensitive to } \lambda \]

Background:

- continuum: \(bb, bbj, jj, \gamma\gamma \)
- resonant: \(ZH \rightarrow bb\gamma\gamma \)

Smearing: MadMax \(\rightarrow \) parton level study

\[\rightarrow \text{modify propagator} \]

\[\frac{1}{p^2 - m^2 - i\Gamma} \rightarrow e^{-\left(\frac{\sqrt{p^2 - m}^2}{4\sigma^2}\right)} \]

gaussian width

- Simulation model
- Parametric model
- \(\sigma_{\text{eff}} = 1.94 \text{ GeV} \)
- FWHM = 3.50 GeV

\(\text{arXiv:1411.4362 (photons)} \)
\(\text{CMS-PAS-HIG-15-005 (bottom)} \)
Higgs Pairs

Signal: both box and triangle diagram

→ Higgs self coupling sensitive to λ

Background:

<table>
<thead>
<tr>
<th>Continuum</th>
<th>Resonant</th>
</tr>
</thead>
<tbody>
<tr>
<td>$bb\gamma\gamma$</td>
<td>$ZH\gamma$</td>
</tr>
<tr>
<td>$bbj\gamma$</td>
<td>$jj\gamma\gamma$</td>
</tr>
</tbody>
</table>

see 1603.06896 (CMS)

Smearing: MadMax → parton level study

→ modify propagator

Efficiencies:

- **b-tagging**
 - arXiv:1309.1057

- **fake photons**
 - CERN-LHCC-2015-010
High Luminosity LHC: $\mathcal{L} = 3000 \text{ fb}^{-1}$
High Luminosity LHC: $\mathcal{L} = 3000$ fb$^{-1}$
Higgs Pairs - Results

High Luminosity LHC: $\mathcal{L} = 3000$ fb$^{-1}$

CMS diphoton trigger
Higgs Pairs - Results

High Luminosity LHC: \(\mathcal{L} = 3000 \ \text{fb}^{-1} \)

CMS diphoton trigger

differential cross section including efficiencies

\[p_{T,\gamma}^{max} \]
High Luminosity LHC: $\mathcal{L} = 3000 \text{ fb}^{-1}$

CMS diphoton trigger

differential cross section including efficiencies

Higgs Pairs - Results

CMS diphoton trigger

differential cross section including efficiencies

find regions with high significance

same for all other kinematic variables
Higgs Pairs - Results

High Luminosity LHC: $\mathcal{L} = 3000 \text{ fb}^{-1}$

Total Significance $Z = 4.76$
Higgs Pairs - Results

Measuring λ:

$\lambda = 5\lambda_{SM}$

$Z = 3.21$

different region of parameter space carry significance

$\lambda = \lambda_{SM}$

$Z = 4.76$
Measuring λ:

![Graph showing the measurement of λ](image-url)
Measuring λ:

![Graph showing the measurement of λ.](image-url)
Higgs Pairs - Results

Measuring λ:

![Graph showing results for measuring λ. The graph displays three lines: σ_S, $\sigma_S \times 10$ (including efficiencies), and σ_B (including efficiencies). The x-axis represents λ/λ_{SM}, and the y-axis represents σ in [fb].]
Higgs Pairs - Results

Measuring λ:

![Graph showing the measurement of λ with significances and efficiencies.](image)
Conclusion and Outlook

MadMax

- maximum significance
- fully differential significance
 → track regions of significance
- automated and fast

Higgs Pair Analysis

Outlook

- test signal hypotheses: \(S_2 + B \) vs. \(S_1 + B \)
- explicit particle smearing