Stop Search in the Compressed Region via Semileptonic Decays

Motivation

Stop Search in the Compressed Region

Lingfeng Li

Introduction

Kinematics Cut Selection MC analysis Results Conclusion

- A light Higgs boson puts tension on naturalness.
- ► A light stop is preferred to cancel the top loop contribution to m_H.
- \blacktriangleright Stop mass excluded upto \sim 750 GeV on LHC.
- ► traditional search techniques using M_{T2}, H_T^{miss}... are not sensitive for stop in the compressed region.
 (m_{t̃} ≈ m_t + m_{x̃})

We need to fill the gap in the compressed region where a light stop is still possible.

Motivation (Continued)

Stop Search in the Compressed Region

Lingfeng Li

Introduction

Kinematics Cut Selection MC analysis Results Why do we prefer semileptonic decays ($WW \rightarrow \ell + \nu + \text{ jets}$)?

- Less SM background (e.g. QCD multi-jets, unidentified leptons)
- ► Considerable cross session (BR≈ 44%)
 - Similar to fully hadronic decays (BR $\approx 46\%$)
 - Much bigger than dileptonic ones (BR $\approx 11\%$)

Stop Decay Chain

What happens when $m_{\tilde{t}} \approx m_t + m_{\tilde{\chi}}$?

Compressed Region

Stop Search in the Compressed Region

Lingfeng Li

Kinematics Cut Selection MC analysis Results

- ► In the compressed region, the decay products of stop decay (t and x̃) are both static in stop reference frame.
- When boosted, the two decay products becomes comoving in the lab frame. Therefore, their momentums would have the same ratio as their masses.

 $\frac{p_{\tilde{\chi}}}{p_{\tilde{t}}} \approx \frac{m_{\tilde{\chi}}}{m_{\tilde{t}}} \tag{1}$

When the stop pair are produced nearly back-to-back, the event looks like a SM t pair production.

Compressed Region with a large ISR

Stop Search in New topology: stop pair produced with a hard initial state the Compressed radiation(ISR) jet. $(p_{T_{\tilde{\chi}1}} + p_{T_{\tilde{\chi}2}} \approx \frac{m_{\tilde{\chi}}}{m_{\tau}} (p_{T_{\tilde{\tau}1}} + p_{T_{\tilde{\tau}2}}))$ Region Kinematics $R_{M} \equiv \frac{p_{T}^{miss}}{p_{T}(ISR)} \approx \begin{cases} \frac{m_{\bar{\chi}}}{m_{\bar{t}}} & (stop) \\ 0 & (SM) \end{cases}$ $p_T(\vec{t}_1)$ $p_T(\tilde{t}_2)$

 $p_T(\tilde{\chi}_1) + p_T(\tilde{\chi}_2)$

Hadronic Analysis (arXiv:1506.00653 [hep-ph]).

Lingfeng Li (UCD)

Stop Search in the Compressed Region

Semileptonic Case

Stop Search in the Compressed Region

Lingfeng Li

Kinematics Cut Selection MC analysis Results Conclusion

- ▶ In order to recover the LSP momentum sum, need to solve for neutrino momentum (p_{ν}) and subtract it from the MET. $(R_M \rightarrow \bar{R}_M)$
- Requires 4 relations.

$$p_{\nu}^{2} = 0$$

$$(p_{\ell} + p_{\nu})^{2} = m_{w}^{2}$$

$$(p_{\ell} + p_{\nu} + p_{b})^{2} = m_{t}^{2}$$
perpendicular part:
$$p_{T\nu}^{\perp} = p_{T}^{\perp}$$

Cut Selection

Stop Search in the Compressed Region

Lingfeng Li

Introduction

<inematic:

Cut Selection MC analysis Results Conclusion

- ▶ p_T(ISR) ≥ 475 GeV
- ▶ MET ≥ 200 GeV.
- $|\phi_{\ell} \phi_{MET}| > 0.9.$
- Others...

Background and Signal Simulation

Stop Search in the Compressed Region

Lingfeng Li

Introduction Kinematics Cut Selection MC analysis Results Conclusion

SM background

- $t\bar{t}$ (semileptonic)
- ▶ tt̄ (dileptonic)
- single top production (small Xsec.)
- ▶ (Multi)vector boson with jets (small Xsec.)
- ► tt̄ production with an extra vector boson. (low signal efficiency)

Compressed Region signal

Stop pair (semileptonic)

Result for case study

Compared with Fully Hadronic Analysis

The significance is around 4 for $m_{\tilde{t}} = 400$ GeV.

Lingfeng Li (UCD)

Results

Stop Search in the Compressed Region

Lingfeng Li

Introduction Kinematics Cut Selection MC analysis Results

$m_{\tilde{t}}$ (GeV)	250	300	350	400	450	500	550	600
$\sigma_{m_{\tilde{t}}-(m_{\tilde{\chi}}+m_t)=0}$	19.7	15.8	11.0	8.4	5.8	5.1	3.8	2.1
$\sigma_{m_{\tilde{t}}-(m_{\tilde{\chi}}+m_t)=-30}$	22	19	13	11	7.2	4.7	3.1	1.7
$\sigma_{m_{\tilde{t}}-(m_{\tilde{\chi}}+m_t)=30}$	-	7.6	5.3	3.3	2.4	1.7	1.3	0.9

Results (Continued)

Conclusion

- Stop Search in the Compressed Region
- Lingfeng Li
- Introduction Kinematics Cut Selection MC analysis Results
- We have studied the stop search from direct *t̃t̃j* production in the compressed region, using the semileptonic decay mode.
- For 300 fb⁻¹ integrated luminosity at LHC 13 TeV, the semileptonic channel can have a discovery reach for the stop mass up to about 500 GeV, in comparison to ~ 400 GeV for the fully hadronic channel.

The End (Time For Questions)

Lepton Energy

• Choose the solution with bigger E_{ν}

Azimuthal Distribution

Stop Search in the Compressed Region

Lingfeng Li

Introduction Kinematics Cut Selection MC analysis Results MET and $p_T(ISR)$ should be back-to-back without ν

$$\bullet |\phi_{J_{ISR}} - \phi_{MET}| \ge 2$$

What about the relation between the lepton and the MET?

► For SM, high MET indicates a highly boosted W, $p_{T_{\ell}}$ and p_T^{miss} tends to be collinear.

► For signal, p_T^{miss} could be separated from $p_{T_{\ell}}$ **Need to cut** $\Delta \phi_{\ell,MET}$!

Azimuthal Distribution (Continued)

- Green points/curve: semileptonic $t\bar{t}$ background
- ▶ Red points/curve: dileptonic *tt* background

Cut Selection (details that nobody wants to know)

- Stop Search in the Compressed Region
 - Lingfeng Li
- Introduction Kinematics Cut Selection MC analysis Results Conclusion
- At least 4 jets with non-zero b jets. Events with τ jets are vetoed.
- $p_{T\nu} < 180 \text{ GeV}, \ p_{T\nu} < 6p_{T\ell}.$
- ▶ $p_T(J_2, J_3) \ge 60$ GeV.
- ▶ For more than 1 *b* jet that give solutions, choose the one with a smaller \bar{R}_M
- Pick the greater E_{ν} among two solutions.
- $|\phi_{ISR} \phi_{MET}| \ge 2.$

Moving along the Compressed Region

Moving away from the Compressed Region

Statistics

Stop Search in the Compressed Region

Lingfeng Li

Introduction Kinematics Cut Selection MC analysis Results Conclusion

Criteria for signal region • If $m_{\tilde{\chi}} \ge m_{\tilde{t}} - m_t$, choose $\frac{m_{\tilde{\chi}}}{m_{\tilde{t}}} - 0.15 < \bar{R}_M < 1$ • If $m_{\tilde{\chi}} < m_{\tilde{t}} - m_t$, choose $\frac{m_{\tilde{t}} - m_t}{m_{\tilde{t}}} - 0.15 < \bar{R}_M < 1$ The significance is given by

$$\sigma = \sqrt{2\left[(S+B)\log\left(\frac{S+B}{B}\right) - S\right]}$$
(2)

Statistics(Continued)

Stop Search in the Compressed Region

Lingfeng Li

Introduction Kinematics Cut Selection MC analysis Results Conclusion

Significance as a function of the fractional background uncertainty for the case study.

Lingfeng Li (UCD)