

Diboson Resonance Searches at CMS

Zijun Xu, Peking University on behalf of the CMS Collaboration

Phenomenology 2016 Symposium 9-11 May 2016, University of Pittsburgh

Motivation for Diboson Search

Beyond the Standard Model

- Hierarchy problem
- Dark matter

Search for heavy resonances decaying to diboson

- 750 Diphoton bump
 - γγ, Ζγ, WW, ZZ
- Extra-dimension
 - Bulk Graviton: WW, ZZ
- Heavy Vector Triplet framework
 In strongly coupled model:
 Br(X → VV) ≈ Br(X → VH) ≈ 50%

From Run1 to Run2

- In Run1, excess of events around 2 TeV in diboson analyses
 - ATLAS: largest excess in WZ all-hadronic
 - CMS: largest excess in WH semileptonic
- 8 TeV \rightarrow 13 TeV
 - For 2 TeV Bulk Graviton, parton luminosity scaling by ~15

Date (UTC)

CMS Recorded: 3.81 fb

T and all detectors good: 2.3 fb

Recorded at B=3.8 T: 2.9 fb

2 141

otal

2015-11-03 06:25 UTC

3.5 3.0

2.5

2.0

1.5 1.0

0.5

2 NON

High-Mass Diboson Resonances

- CMS searches overview
 - 8 TeV, EXO-12-024: WW/ZZ/WZ→qqqq
 - 8 TeV, EXO-13-009: WW→lvqq, ZZ→llqq
 - 8 TeV, EXO-14-009: VH \rightarrow qqbb, VH \rightarrow qqWW \rightarrow qqqqq
 - 8 TeV, EXO-14-010: WH→lvbb
 - 13 TeV, EXO-15-002: WW/ZZ/WZ→qqqq, WW→lvqq
 - 13 TeV, B2G-16-003: WH→lvbb, ZH→llbb, ZH→vvbb
 - 13 TeV, B2G-16-004: WW→lvqq

More results for X→HH, or H→diboson Luca Pernie: Searches for extended Higgs sectors with CMS Luca Cadamuro: Searches for resonant di-Higgs production with CMS

Resonance Search Strategy

- Diboson decay channels:
 - All-hadronic, semi-leptonic
 - Fat jets for hadronic W/Z/H bosons
 - Leptonic W \rightarrow lv, and Z \rightarrow 2l/2v
- Backgrounds estimation
 - all hadronic:
 - Background is described by smooth fit function
 - semi-leptonic:
 - Each components are estimated from observed data or from simulation
- "Bump" search
 - 0 or 1 neutrino: search excess over the m_{VV} distributions
 - 2 neutrinos: transverse mass m_T

CMS-JME-13-006 CMS-EXO-14-009 CMS-EXO-15-002

Hadronic W/Z/H Tagging

- W, Z, and H all have significant branching fractions to jets
 - When pT >~200 GeV, traditional dijet search begin to fail
- Jet Mass for W/Z/H
 - Pruning
- Jet substructure
 - N-subjettiness
 - $\tau 2/\tau 1$ for W/Z \rightarrow qq
 - $\tau 4/\tau 2$ for $H \rightarrow WW \rightarrow qqqq$

Hadronic H(bb) Tagging

- The boosted H(bb) signal can be identified by:
 - (old) 2 subjets of a fat jet
 - $\Delta R > 0.3$, subjets btag; $\Delta R < 0.3$, fatjet btag
 - (new) Double-b tag is a dedicated tagger to identify fat jets with 2 b-quarks

Defines sub-jets b-tagging observables for each sub-jet explicit jet track association

double-b

Secondary Vertex within the fat-jet cone Observables built from secondary vertex and tracks associated to fat-jet

All-hadronic VV search @8 TeV

• Dijet, V-tagging: jet pruned mass + $\tau 2/\tau 1$

All-hadronic VV search @13 TeV

- Dijet, V-tagging: jet pruned mass + $\tau 2/\tau 1$
 - W-enriched:65-85 GeV; Z-enriched:85-105 GeV

All-hadronic VH search @8TeV

• Dijet

- V-tagging
- H→bb: fatjet and subjet b-tagging
- $H \rightarrow WW \rightarrow qqqq: \tau 4/\tau 2$

Categories	V tag	H tag
$V^{HP}H_{bb}$	$ au_{21} \leq 0.5$	b tag
$V^{LP}H_{bb}$	$0.5 < \tau_{21} < 0.75$	b tag
$V^{HP}H^{HP}_{WW}$	$ au_{21} \leq 0.5$	$ au_{42} \leq 0.55$
$V^{LP}H^{HP}_{WW}$	$0.5 < \tau_{21} < 0.75$	$ au_{42} \leq 0.55$
$V^{HP}H^{LP}_{WW}$	$ au_{21} \leq 0.5$	$0.55 < au_{42} < 0.65$

L = 19.7 fb⁻¹ at vs = 8 TeV

ΖZ

Events / GeV

m_{zz} [GeV]

10

10-2

500

٠

CMS Data (ee HP)

Z+jets

1500

1000

Frequentist CL, observer

requentist CL. expected ± 1 or

Frequentist CL expected ± 2σ

 $r_{TH} \times BR(G_{bulk} \rightarrow ZZ), k/\overline{M_{Pl}} = 0.5$

 $H \times BR(G_{bulk} \rightarrow ZZ), k/\overline{M_{pl}} = 0.2$

2000

0 2500 M_G [GeV]

L = 19.7 fb⁻¹ at √s = 8 TeV

Background estimation

Other Backgrounds (tt, VV)

G_{bulk} M_G = 1 TeV, k/M_{Pl} = 0.5 (x100)

2000

2500

m_{zz} [GeV]

11

L = 19.7 fb⁻¹ at √s = 8 TeV

CMS Data (μμ HP)

Z+iets

1500

[qd] (ZZ

↑

×BR(G

σ_{95%}

10

600

1000

1500

10

Background estimation

Other Backgrounds (tł, VV)

 $G_{hum} = 1 \text{ TeV}, k/\overline{M_{Pl}} = 0.5 (x100)$

CMS

WV, ZV Semileptonic @8TeV

- W→lv, a fat jet
- Z→II, a fat jet
 - No strong excess at 750 GeV

WV Semileptonic @13TeV

- WV: WW→lvqq and WZ→lvqq
- WW Run2 separate to low mass region and high mass region
 - Low mass analysis has loose triggers and event selections
 - No strong excess at 750 GeV

WH Semileptonic @8TeV

- $W \rightarrow lv$, a fat jet with H(bb) tagging
- Excess at 2 TeV in el channel

VH Semileptonic @13 TeV

- W→lv, Z→vv/ll
- A fat jet with H(bb) tagging
- Excess at 2 TeV not be confirmed
 - Need more data

CMS Run1: HVT and Bulk Graviton

No significant excess observed

CMS Run2: HVT and Bulk Graviton

No significant excess observed

Summary

- Run 2 of the LHC is off to a good start
 - 13 TeV analysis already more sensitive at TeV scale
 - Many great results already now
- Looking forward to 2016 LHC run
 - Many new results expected for this summer
 - 750 GeV, 2-3 TeV, and ultra-high mass region

Backup

THE COMPACT MUON SOLENOID

PARTICLE DETECTION AT CMS

LHC Run1 and Run2

21

High-Mass Diboson Resonances

- Growing effort to explore high mass diboson resonances in a large variety of final states
 - WW, WZ, ZZ, WH, ZH, HH
- W, Z, and H all have significant branching fractions to jets
 - When X is massive (typically starting from ~600-900 GeV), traditional dijet search begin to fail
 - Need to use advanced techniques to identify (and even b-tag) merged jets

3

Hadronic W/Z Tagging

- Fat jet used in 2015
 - AK8, pT>200
 - Jet pruned mass
 - τ2/τ1
- Many interesting new techniques to be explored
 - PUPPI+Softdrop, DDT, ... arXiv:1407.6013 arXiv:1603.00027

Hadronic H(bb) Tagging

Data-Driven for Backgrounds

WV run2

WH run2

WV, ZV Semileptonic @8TeV

VH Semileptonic @13 TeV

13 TeV

m, (GeV

13 TeV

WV Semileptonic @13TeV

WV Semileptonic @13TeV

29

Systematics Uncertainty

- WV search
 - Signal: PDF, scale, W-tagging scale factor,...
 - Background normalization
 - W+jets normalization driven by amount of data in sideband
 - TTbar and Single Top normalization by the scale factor derived in topenriched control sample
 - VV normalization by the W-tagging scale factor derived in topenriched control sample
 - W+jets M_{VV} shape
 - M_{VV} shape in sideband driven by data
 - alpha shape driven by W+jets MC statistics
- ZV search is very similar to the WV search
 - Same hadronic V-tagger for example
 - Special lepton ID for boosted topologies

$\mathsf{CMS}\ \mathsf{Run1} \to \mathsf{Run2}$

- Sensitivity higher for 13 TeV analysis due to parton luminosity and cut optimizations
- New for 13 TeV: Sensitivity improved when splitting into W/Z mass categories

CMS Run1: VV+WV+ZV

• No significant excesses observed combining allhadronic and semileptonic channels

