

VV/VH/HH Bumps @ ATLAS

Samuel Meehan for the ATLAS Collaboration

University of Washington 750(γγ) & Related : Ben Pearson

10 May 2016

What are we doing?

• Signature based searches

S. Meehan

 Basic Philosophy : cover (as much of) the theory space as we can with a set of searches based on more general experimental signatures

"No hole left behind!"

3 September 2013 • 2

What are we doing?

• Signature based searches

- Basic Philosophy : cover (as much of) the theory space as we can with a set of searches based on more general experimental signatures
- Bumps and tails
 - Inspect some mass spectrum (or proxy mass spectrum) and look for excess not explained by well understood phenomena

What are we "looking" for?

Two^(x) primary benchmark models used to guide searches

KK-Graviton (G*)

Parameters of Interest Warping factor, k/M_{plank}

$$ds^2 = e^{-2kr_c\phi}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_c^2d\phi^2$$

Heavy Vector Triplet Spin 1

Parameters of Interest Couplings in "EFT-like" lagrangian

$$\mathcal{L} \subset ig_V c_H V^a_\mu H^\dagger \tau^a D^\mu H + \frac{g^2}{g_V} c_F V^a_\mu J^{\mu a}_F$$

• S. Meehan

10 May 2016 • 4

The Ingredients

Large-R Jets

"Standard"(1) Electrons (2) Muons (3) R=0.4 Calo Jets (4) Missing E_T

The Special Ingredients

Large-R Jets

- Baseline Jet : Topoclusters \rightarrow anti-kT R=1.0 \rightarrow Trimmed(R_{sub}=0.2,f_{cut}=5%) 0
 - Kinematics : pT down to 200 (250) GeV & $|\eta| < 2.47$
- W/Z jet : [Mass] + $[D_2] \rightarrow$ tuned selections vs. p_T 0
- Higgs jet : [Mass] + [track jet b-tags] 0

Boson Jets

Efficiency ~ 50% / Rejection ~ 50

W/Z mass

Higgs Jets Efficiency ~ 50% / Rejection ~ $10 \rightarrow 10^6$

Higgs mass **A** Two flavored lobes

ATL-PHYS-PUB-2015-035, ATL-PHYS-PUB-2015-022

PERF-2015-03, ATL-PHYS-PUB-2015-033

VV (vvqq/lvqq/llqq/qqqq)

Search Strategy

- Search strategy
 - \circ Semileptonic : Trigger on leptons \rightarrow boson-tag hadronic jet
 - Fully Hadronic : Trigger on high pT jet → double boson-tag
- Background estimation by background composition
 - Semileptonic (V+jet/ttbar): MC-based with dedicated control regions
 - Fully Hadronic (Multijet) : Fit of smoothly falling backgound (ala dijet searches)

Search Results

- Search performed via combined fit to all SR and CR
 - Rely on MC backgrounds and constraints between SR's and CR's

D Lepton (ZZ/ZW)

- MET trigger + high MET
- o anti-QCD topology Cut
- Separated b-jet veto
- Search : MT(Met+J)

1 Lepton (WW/WZ)

- o Single e/ μ trigger
- \circ p_Z(ν) from M_W constraint
- Kinematic selections for sensitivity $(p_T^{\vee}/M_{|\nu})$

Search · M(I+MFT+ I)

2 Lepton (ZZ/ZW)

- o Single e/ μ trigger
- Dilepton mass m_{ll}~m_z
- o pT(II) constraint by m_{II}=m_Z
- Search: M(I+I+J)

$ZZ/ZW/WW \rightarrow qqqq$

VV Combination

- No "dominant channel" above 1 TeV
 - \circ Full combination of all channels really worth it ightarrow sizeable sensitivity gain
- Obvious question : Can qqqq go lower?
 - Trigger level analysis? JSS in the trigger? (https://cds.cern.ch/record/2104248)

VV Combination

- What can we do with these results?
- Begin to constrain the HVT coupling strengths
 - Along with acceptances/efficiencies → more general constraints

ATLAS-CONF-2015-074

Signal

Region

Control

Control

Search Strategy

- Analysis very similar to semi-leptonic VV
 - Rely on flavor for control region design
- Backgrounds : fully MC-based
 - WZ+jets \rightarrow ttbar \rightarrow SM diboson \rightarrow single top
 - Combined likelihood fit constrains backgrounds
 - Much experience from Run 1 SM-VH(bb) search

Search Results

• Analysis very similar to semi-leptonic VV ... with flavor

Rely on flavor for control region design

0 Lepton (ZH)

MET trigger + high METSeparated b-jet veto

Search : $M_{T}(MET+J)$

1 Lepton (WH)

- \circ Single e/ μ trigger
- o High MET
- Search : M(I+MET+J)

2 Lepton (ZH)

- \circ Single e/ μ trigger
- Dilepton mass m_{II}~m_Z
- Search : M(I+I+J)

10 May 2016 • 15

• S. Meehan

Constraints

- Heavy Vector Triplet is main benchmark
 - V'[±] constrained from 1 lepton channel
 - V¹⁰ constrained from 0/2 lepton channels
- Combine with VV searches? → more global constraints

HVT Neutral V⁰

10 May 2016 • 16

10 May 2016 • 17

HH from Run 1

- Run 1 result : sensitivity dominated by 4b
- Run 2 priority : push sensitivity boundary with 4b

Search Strategy

• Hard division based on M(X) @ 1100 GeV

Resolved Small-R calo jets \rightarrow M(j,j,j,j)

1 OR 2 b-jet trigger → pT(dijet) & ΔR(j,j)<1.5 in dijet
Topology selections on Δη (dijet,dijet) and tt-veto
4 b-tags

$\frac{Merged}{Trimmed+track jets \rightarrow M(J,J)}$

- Single large-R jet trigger
- \circ p_T(J₁)>350 GeV for "tt-veto"
- Topology selection on $\Delta \eta$ (J,J)

Signal

Region

 m_h

o 3 OR 4 b-tags

M(fatjet-1)

Top

Region

Control

Region

m_{top}

S. Meehan

¹⁰ May 2016 • 19

Search Strategy

Hard division based on M(X) @ 1100 GeV

Resolved Small-R calo jets \rightarrow M(j,j,j,j)

1 OR 2 b-jet trigger → pT(dijet) & ΔR(j,j)<1.5 in dijet
Topology selections on Δ η (dijet,dijet) and tt-veto

Merged Trimmed+track jets \rightarrow M(J,J)

- Single large-R jet trigger
- \circ p_T(J₁)>350 GeV for "tt-veto"
- Topology selection on Δ η (J,J)
 3 OR 4 b-tags

S. Meehan

Results

- Backgrounds : multijet + #bar
- Multijet : 2-tag SR $\times \mu_{sideband}$
 - Resolved : μ_{sideband} from simple ratio (4-tag/2-tag)
 - Merged : μ_{sideband} from fit jet mass (top peak!)
- ttbar
 - Resolved : invert tt-veto \rightarrow scale by ε (top to fake h)
 - Merged : MC \rightarrow normalized simultaneous to MJ

Constraints

- Sensitivity to BSM already at Run 1 level
 - Pushing phase space to "ultra"-boosted region
- Sensitivity still far away from SM prediction of σ (pp \rightarrow hh)
 - Limit here : σ < 1.22 pb

0

SM prediction : $\sigma_{SM} < 12.9$ fb

... factor of 100 to go ...

Conclusions / Thoughts

- Run 2 dataset (thus far) handled well due to experience/ knowledge obtained in Run 1
 - Many results we've had since December
- Still many opportunities for improvement!
 - Fatjet performance ... trigger level analyses ... more global combinations ... VBF

Performance

Experimental uncertainties

Type of uncertainty	Impact (%)
Total	81
Data statistical	78
Systematic	22
Experimental und	certainties
R = 0.4 jets	4.4
$E_{\pi}^{ m miss}$	2.2
R = 1.0 jets	16
Theoretical unce	ertainties
Signal	6.5
Z+jets	9.9
W+jets	9.1
Тор	11

Interpretations VV ... +VH ... +HH

New Channels Tag the production

• S. Meehan

Let the data roll ...

10 May 2016 • 23

BACKUP

10 May 2016 • 24

What are the ingredients?

Electrons

- o e-cal cluster with track
- \circ p_T down to 7 GeV
- η | < 2.47
- Quality based on shower shape likelihood (loose, medium, tight)
- o Track (and calo) isolation
- o d₀,z₀ Impact parameter

Muons

- ID track + MS track
- \circ p_T down to 7 GeV
- \circ | η | < 2.5
- Quality based on tracking reco
- o Track (and calo) isolation
- o d₀,z₀ Impact parameter

Small-R Jets

- Topoclusters → anti- k_t R=0.4
- \circ p_T down to 20 GeV
- η | < 2.5 (4.5)
- JetVertexTagger for low pT jets
 - Pileup rejection
- B-tagging : BDT combination
 - BDT(Vertexing + d_{0,tracks})
 - 70% (77%) signal efficiency

Missing E_T

- Vector sum of two components
- Calibrated activity (hard objects):
 - Electrons, muons, small-R jets
- Unassigned activity (soft stuff):
 - Inner detector tracks

The Special Ingredients

Large-R Jets

- Baseline Jet : Topoclusters \rightarrow anti-kT R=1.0 \rightarrow Trimmed(R_{sub}=0.2,f_{cut}=5%)
 - Kinematics : pT down to 200 (250) GeV & $\mid \eta \mid$ < 2.47
- W/Z jet : [Mass] + $[D_2]$ → tuned selections vs. p_T
- Higgs jet : [Mass] + [track jet b-tags]

VV Combination

Question 1 : What happened to Run 1 excess?

WARNING!

Not CLs-profile-likelihood-with-correlated-NP's

- X Production : σ (pp \rightarrow X) increased by 5-10
- Sensitivity to X : Still less sensitive by factor ~3
- Should have shown up!
 - We have gamma-gamma now 😊

$HH \rightarrow 4b$

- Very low backgrounds → Hard division "makes sense" from signal efficiency point of view
- Higgs tagging relies on true separation/isolation of objects
 What happens in the "ultra"-boosted regime?

Resolved

Merged

VV Combination

- No "dominant channel" above 1 TeV
 - Full combination of all channels really worth it
 - Factor of 3 gain in sensitivity
- Obvious question : Can qqqq go lower?
 - Trigger level analysis? JSS in the trigger? (https://cds.cern.ch/record/2104248)

Ntracks(Ungroomed)

- N(tracks, ungroomed) < 30 used in analysis
- Additional calibration of tagger performed

