

Search for high mass scalar resonances in diboson decay modes at 13 TeV by the ATLAS collaboration

Ben Pearson on behalf of the ATLAS collaboration 2016 Phenomenology Symposium

Introduction

- Searches for an extension to the Higgs sector via an additional heavy, CP-even scalar singlet
- Using complete 2015 Dataset!
 - 3.2 fb⁻¹ @ 13 TeV
- Many joint efforts between Higgs and Exotics groups yielding a variety of signal interpretations:
 - Scalar/Heavy-Higgs spin 0
 - Widths from 4 MeV to 15% of m_{χ}
 - Masses from 200 GeV to 3 TeV
 - Heavy Vector Triplet (HVT) spin 1
 - Graviton spin 2

Outline

• This talk will highlight the most recent results:

		Documentation	Date
$X \rightarrow WW$	lvqq + lvlv Combination	ATLAS-CONF-2016-021	April 2016
X→ZZ	llvv	ATLAS-CONF-2016-012	March 2016
	llqq	ATLAS-CONF-2016-016	March 2016
	vvqq	ATLAS-CONF-2015-068	December 2015
$X \rightarrow VV$	<i>qqqq</i>	ATLAS-CONF-2015-073	December 2015
	Hadronic Combination		coming soon
$X \rightarrow Z\gamma$	$ee\gamma + \mu\mu\gamma + qq\gamma$	ATLAS-CONF-2016-010	March 2016
$X \!$	-	ATLAS-CONF-2016-018	March 2016

Q

Ben Pearson

Some Tools and Methods

- Searches look for peaks in mass distributions
 - Smooth falling SM backgrounds
 - Searches with >1 neutrino use the transverse mass (m_T)
- High mass resonances result in highly boosted decay products
 - Collimated leptons and jets
 - Dedicated vector boson jet (V_{iet}) tagging
 - Both quarks are reconstructed in a single large-R jet
 - Tagger uses jet mass (m_J) and a substructure variable D₂: compatibility with a two-prong structure
 - m_J requirement to be within 15 GeV of m_W/m_Z
 - p_T dependent requirements on D_2 configured to give 50% signal identification efficiency

$X \rightarrow WW \rightarrow lvqq$

$X \rightarrow WW \rightarrow lv lv$

- Similar approach to semi-leptonic channel
 - Dominant bkgs.: top-quark and WW productions \rightarrow use control regions
 - Fit discriminant transverse mass: $m_{\rm T} = \sqrt{\left(\sqrt{\left|\mathbf{p}_{\rm T}^{ll}\right|^2 + m_{ll}^2} + E_{\rm T}^{\rm miss}\right)^2 \left|\mathbf{p}_{\rm T}^{ll} + \mathbf{E}_{\rm T}^{\rm miss}\right|^2}$
- SR split by N_{jet} (0, 1, ≥2) advantage of different bkg. comp.

- · Limits also set on VBF production σ x BR
 - For NWA
 - Expect. limit $\sigma_{ggF} = 0$
 - Obs. limit σ_{ggF} is nuisance parameter

6

$X \rightarrow WW$ Combined

- ggF combination (*lvlv* N_{jet}=0,1)
- Maximum-likelihood fit (SR and CRs)
- No excess \rightarrow set limits σ x BR
- *lvqq* dominates in entire mass range
- Significantly expanded the mass range from Run 1 (8 TeV data)
 - JHEP01(2016)032

- Important backgrounds
 - ZZ, WZ, Z+jets, and less so WW, tt, Wt, and $Z \rightarrow \tau \tau$
- 3-lepton CR for WZ normalization
- *e*µ CR for inclusive estimate of WW, tt, Wt, and Z→ττ processes

• **Discriminant:**
$$m_{\mathrm{T}}^{ZZ} = \sqrt{\left(\sqrt{m_{Z}^{2} + \left|\mathbf{p}_{\mathrm{T}}^{ll}\right|^{2}} + \sqrt{m_{Z}^{2} + \left|E_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}\right)^{2} - \left|\mathbf{p}_{\mathrm{T}}^{ll} + \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}$$

Ben Pearson

Search for high-mass scalar resonances in diboson decay modes

$X \rightarrow ZZ \rightarrow llvv$

- The number of data points and the m_T^{ZZ} distributions are consistent with the SM predictions
- Upper limits are set on the σ x BR for NWA
 - For each mass point (300-1000 GeV)

- Merged **and** resolved reconstruction of the $Z \rightarrow qq$ decay
 - **Merged**: one *Z*-tagged large-*R* jet (J) and **resolved**: a pair of small-*R* jets (jj)
- Events failing merged analysis selection are "recycled" to resolved
- Resolved analysis further categorization
 - b-tagged jets: exactly 2 (tagged) and < 2 (untagged)
- **Dominant bkgs**.: Z+jets, diboson, top

Ben Pearson

Control regions: Top CR for resolved tagged region (diff. flavor l 's & m_{bb} \approx m_{top}) Z+jets CR for each signal region ($m_{J/jj}$ side-bands)

$X \rightarrow ZZ \rightarrow llqq$

- The three signal regions and four CRs are fit simultaneously
 - Constraining the normalization of the Z+jets and Top backgrounds
 - Discriminant is the full invariant mass m_{llJ} / m_{llii}
- No significant excess is observed
- Upper limits are set on the σ x BR for NWA and LWA
 - For each mass point (300-1000 GeV) and width (NWA & 5,10,15%)

11 AT

- Dominant bkgs: Z+jets, W+jets, and ttbar
 - Normalized using dedicated control regions in a combined fit

 $|\mathbf{p}_{\mathrm{T}}^{J}|$

 $+ E_{\rm T}^{\rm miss} \Big|^2$

12

• Fit discriminant transverse mass: $m_{\rm T} = \sqrt{\left(\sqrt{m_j^2 + \left|\mathbf{p}_{\rm T}^J\right|^2} + E_{\rm T}^{\rm miss}\right)}$

Signal region: lepton veto, MET>250 GeV, Z-tagged large-R jet, 0 b-jets

$X \rightarrow VV$ Hadronic Combination

- Although G* signal is shown above, results below use scalar signal
- No significant excess observed, so combined limits set on σ x BR

Search for high-mass scalar resonances in diboson decay modes

- Search for localized excess in the invariant mass distribution
- Leptonic (*ll*γ) and hadronic (*J*γ) analyses
 l = *e*,μ and *J* = large-*R* jet
- Dominant Bkgs.
 - Leptonic
 - $Z+\gamma$ continuum
 - Hadronic
 - γ+jet non-resonant
 SM production
- Discriminant
 - Invariant mass $m_{ll\gamma}/m_{J\gamma}$

$X \rightarrow Z\gamma$, $Z \rightarrow ee, \mu\mu, qq$

- Signals Γ_x = 4 MeV (m_x = 200-3000 GeV)
 - Leptonic Sel: $p_T(\gamma) > 0.3m_{ll\gamma}$, and $m_{II} = m_z \pm 15 \text{ GeV}$
 - Hadronic Sel: $p_T(\gamma) > 250 \text{ GeV}$, Z-tagged $p_T(J) > 200 \text{ GeV}$
- Total background exhibits smoothly falling mass spectrum
 - Parameterized by smooth function with data-adjusted parameters
- Maximum-likelihood fit to $m_{ll\gamma}/m_{J\gamma} \rightarrow limits$ on the $\sigma \times BR$

Search for high-mass scalar resonances in diboson decay modes

 $X \rightarrow \gamma \gamma$

- Signals m_x = 200 2000 GeV
 - Widths (Γ_x) up to $\Gamma_x/m_x = 10\%$
 - Including a narrow width: 4 MeV
 - Large width generation for $m_{\chi} \pm 2\Gamma_{\chi}$
 - Reduce model effects from off-shell region
 - m_{yy} experimental resolution
 modelled by a DSCB function

• Selection:

- Diphoton trigger: $E_T > 35(25)$ GeV
 - leading (sub-leading) photon
- 2 identified and isolated photons
 - With $E_{\rm T} > 40(30) \, {\rm GeV}$
- $E_{\rm T}/m_{\gamma\gamma} > 0.4(0.3)$

 $X \rightarrow \gamma \gamma$

Background estimation

- $-\gamma\gamma$ QCD from MC
- γ +jet and dijet from CRs
- $m_{\gamma\gamma}$ distribution shape
 - Functional form: $f = (1 - x^{1/3})^b x^a$
 - b and a determined by data
 - $x = m_{\gamma\gamma}/\sqrt{s}$

Maximum-likelihood fits

- Entire mass spectrum is used for each mass hypothesis
- B-only to S+B likelihood ratios for local significances

2878 events (m_{$\gamma\gamma$} > 200 GeV)

Ben Pearson

- Largest deviation observed around m_x = 750 GeV
 - 3.9 σ (2 σ global) with a Γ = 45 GeV (6%) signal width
 - Global significance accounts for look-elsewhere-effect using pseudoexperiments
- Not enough for discovery, so limits on σ_{fid} evaluated
 - Fiducial cross-section to minimize model dependence

Summary and Outlook

- Just the tip of the iceberg!?
- Eager for more data!
 - May have 6-8 fb⁻¹ by ICHEP and
 >20 fb⁻¹ by the end of the year
- Collaboration is working hard to output results as efficiently as possible

- Always room for improvement
 - Large-R jet systematics dominate most hadronic channels
 - Improvements to large-*R* jet mass resolution in progress
- The future is bright! Bring on the lumi!

Backup Material

 $X \rightarrow \gamma \gamma$

• Comparison with 8 TeV data

- 20 fb⁻¹ reanalyzed data
 - Newest 8 TeV photon energy calibration
 - Same ID and isolation
 - Extended mass range
- 750 GeV and 6% = Γ/m_{X} signal hypothesis
 - Excess of 1.9σ @ 750 GeV
 - Difference between 8 and 13
 TeV results corresponds to a statistical significance of 1.2σ
 (2.1σ) for gg(qq) production

 $X \rightarrow \gamma \gamma$

 $X \rightarrow \gamma \gamma$

• Limit for a narrow width 4 MeV signal (previous CONF note)

 $X \rightarrow \gamma \gamma$

• Kinematic distribution sanity checks:

Search for high-mass scalar resonances in diboson decay modes

24 ATLAS

 $X \rightarrow \gamma \gamma$

• Double-sided Crystal Ball function:

$X \rightarrow ZZ \rightarrow llqq$

Control regions:

Data

- Top CR for resolved tagged region (diff. flavor *l* 's & $m_{bb} \approx m_{top}$)
- Z+jets CR for each signal region ($m_{J/ii}$ sidebands)

26

Data

┿