Prompt and non-prompt leptonic decays as a window into the dark sector with ATLAS

9 May 2016 – Pheno2016 Heather Russell, on behalf of the ATLAS collaboration

UNIVERSITY of WASHINGTON

U(1) dark – a simplified dark photon model

- $U(1)_{dark}$ is a simple extension to the Standard Model (SM) that adds a vector boson, Z_d (also know as: A', Z', γ_d)
- *Kinetic mixing* between SM and dark sector: $\frac{1}{2} \epsilon F'_{\mu\nu} B^{\mu\nu}$
- Z_D JHEP 02 (2015) 157 10^{-1} $Z-Z_d$ mixing leads to: ÈWPM 10^{-2} Can generate Z_d mass by introducing a dark scalar Z_D E141 10^{-4} Allows for decays: PROMPT NON-PROMPT Orsay 10^{-5} 10^{-2} Z_D 10-3 10^{-1} 10¹ m_{Z_D} [GeV]
- Not discussed in this talk: Drell-Yan production (pp $\rightarrow Z_d \rightarrow l^+l^-$) See JHEP 02 (2015) 157 for a discussion of DY prospects

ATLAS EXPERIMENT

(b)

How does the Z_d decay?

- Depending on the Z_d mass, to leptons or quarks
- Leptons provide a distinct, clean search channel with low backgrounds

Collimation of leptons depends on the Z_d boost/mass:

(a)

$H \rightarrow Z Z_d$

Very similar analysis to $H \rightarrow ZZ^*$, except now $H \rightarrow ZZ^*$ is an irreducible background!

Two pairs of same flavour, opposite sign (SFOS) leptons:

50 < m₁₂ < 106 GeV 12 < m₃₄ < 115 GeV

Mass of 4 leptons required to be consistent with the SM Higgs: $115 < m_{4l} < 130 \text{ GeV}$

Z_d would present as a peak in m₃₄: scan for signal peak in 1 GeV steps (15 GeV – 55 GeV)

No excess of events: set limits on branching ratio for $H \rightarrow Z Z_d$ or kinetic mixing parameter

9 May 2016

$H \rightarrow Z_d Z_d$: analysis

Phys. Rev. D 92 (2015) 092001

No distinction between lepton pairs: both $Z_{\rm d}$ are on-shell, and both $Z_{\rm d}$ have the same mass

- → same 4I mass requirement as $H \rightarrow ZZ_d$: 115 < m_{4I} < 130 GeV
- → select e, μ lepton pairs to minimize $\Delta m = Im_{12} m_{34}I$
- Veto J/ ψ , Y by requiring m_{II} > 12 GeV, veto Z with Im_{II} – m_ZI > 10 GeV, where m_{II} is *any* SFOS lepton pair
- Loose selection requires m_{ij} < m_H / 2, four events pass loose selection

 Final event selection restricts lepton pair invariant mass depending on flavour and m_{zd}:

$H \rightarrow Z_d Z_d$: results

Total background is < 0.1 event in all channels

Two events pass final signal selection:

Limits can be set on BR($H \rightarrow Z_d Z_d$) or the kinetic mixing parameter, κ

Prompt lepton jets

SUSY production of lepton jets, with dark sector candidate X_d:

and Higgs-portal production in Falkowski-Ruderman-Volansky-Zupan (FVRZ) models:

HLSP:

JHEP 02 (2016) 062 A

Hidden lightest stable particle (simulated mass is 2 GeV)

Prompt lepton jets: reconstruction

High dark photon boost

Very collimated leptons

Reconstruction:

- 1. Cluster tracks in $\Delta R = 0.5$ cone
- 2. Search for leptons within $\Delta R = 0.5$ of track axis
- 3. Can find three types of lepton jet: electron (**eLJ**):

 \geq 1 electron, **no** muons, \geq 2 tracks muon (**muLJ**):

 \geq 2 muons, **no** electrons, \geq 2 tracks electron+muon (**emuLJ**):

 \geq 1 muon, \geq 1 electron, \geq 2 tracks

JHEP 02 (2016) 062

Prompt lepton jets: results

- Dominant background is QCD jets faking lepton jets
 - → estimate with ABCD likelihood method using pairs of approximately uncorrelated variables for each 2-LJ topology
- Diboson (includes γ*), tt backgrounds estimated from MC

No significant excess of events in any topology:

Channel	Background (ABCD-likelihood method)	Background (total)	Observed events in data
eLJ-eLJ	2.9 ± 0.9	4.4 ± 1.3	6
muLJ-muLJ	2.9 ± 0.6	4.4 ± 1.1	4
eLJ-muLJ	6.7 ± 1.4	7.1 ± 1.4	2
eLJ-emuLJ	7.8 ± 2.0	7.8 ± 2.0	5
muLJ-emuLJ	20.2 ± 4.5	20.3 ± 4.5	14
emuLJ-emuLJ	1.3 ± 0.8	1.9 ± 0.9	0

Displaced lepton jets

JHEP 1411 (2014) 088

ID EMCAL HCAL MS

What if the dark photons have a non-zero proper lifetime?

Higgs portal model gives three types of LJs:

From two types of decays:

Sensitivity regions:

Heather Russell, University of Washington

9 May 2016

Displaced lepton jets: reconstruction

TYPE0: ≥ 2 *displaced* muons and no jet

TYPE1: ≥ 2 *displaced* muons and one jet

TYPE2: one low-EMF jet

Reconstruction efficiency depends on where the dark photon decays:

Displaced lepton jets: results

Main backgrounds are cosmic rays and QCD jets

- Estimate QCD background using ABCD likelihood method (same region for all LJ topologies):
- Cosmic ray background estimated using data collected in empty bunches during collision runs

No significant excess of events in any topology:

	All LJ pair types	TYPE2-TYPE2 LJs excluded
Data	119	29
Cosmic rays	$40 \pm 11 \pm 9$	$29 \pm 9 \pm 29$
Multi-jets (ABCD)	$70\pm58\pm11$	$12 \pm 9 \pm 2$
Total background	$110 \pm 59 \pm 14$	$41 \pm 12 \pm 29$

Background from TYPE2-TYPE2 (2 low-EMF jets) topology largest – signal contribution is not \rightarrow better limits *without* TYPE2-TYPE2 signal region.

Max $\left\{\sum_{T} \mathsf{p}_{T}\right\}$ [GeV]

Combined lepton jet limits

JHEP 02 (2016) 062 JHEP 1411 (2014) 088

- Dark photon lifetime depends on kinetic mixing parameter
- Small $\varepsilon \rightarrow$ long lifetime
- Limits here are *model dependent* – based on FRVZ model H→2 γ_D + X. Other limits are from direct searches (beam dump, etc.)

HLSP HLSP f_{d_2} f_{d_2}

Heather Russell, University of Washington

Summary of results

Many channels investigated in Run 1:

	one Z _d	two Z _d	four Z _d
prompt, non-collimated Z _d	$H \rightarrow Z Z_d$	$H \rightarrow Z_d Z_d$	
displaced, non-collimated Z _d			
prompt, collimated Z _d		$H \rightarrow Z_d Z_d + X$	$H \rightarrow s_D s_D + X, s_D \rightarrow Z_d Z_d$
displaced, collimated Z _d		$H \rightarrow Z_d Z_d + X$	$H \rightarrow s_D s_D + X, s_D \rightarrow Z_d Z_d$

No excesses found, but parameter space is still open:

Kinetic mixing parameter Will fill in the gaps and push the boundaries with Run 2!

All ATLAS Exotics public results can be found here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults JHEP 02 (2016) 062

ATLAS 20.3 fb⁻¹ √s = 8 TeV

10⁻¹

m, [GeV]

CHARM

BR 10%

E141

10⁻²

Orsay

10 10 Ψ

10-

10-5

10⁻⁶ 10-7

10⁻⁸

 10^{-9} 10^{-10}

10⁻¹

10⁻³

