Lepton Jets from Radiating Dark Matter based on JHEP 07 (2015) 045 (arXiv:1505.07459)

Malte Buschmann, Joachim Kopp, Jia Liu, Pedro A.N. Machado

University of Mainz

Pheno16 05/09/2016

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Model

Use FSR instead of ISR! Motivated by self-interacting DM

Relevant Lagrangian:

$$\mathcal{L}_{dark} \equiv \bar{\chi} (i \partial \!\!\!/ - m_{\chi} + i g_{A'} A') \chi - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$
(1)

DM pair production for toy model:

$$\mathcal{L}_{Z'} \equiv g_q \sum_f \bar{q}_f \vec{Z}' q_f + g_\chi \bar{\chi} \vec{Z}' \chi$$
⁽²⁾

Malte Buschmann (University of Mainz)

Lepton Jets from Radiating Dark Matter

A' Branching Ratios

 $m_{A'} > 2 \text{ GeV}$:

For **leptons**:
$$\Gamma_{\ell^+\ell^-} = \frac{1}{3}\alpha\epsilon^2 m_{A'}\sqrt{1-4\frac{m_{\ell}^2}{m_{A'}^2}}\left(1+2\frac{m_{\ell}^2}{m_{A'}^2}\right)$$

For **hadrons**: QCD language applicable, $\Gamma_{q_f\bar{q}_f} = N_c Q_{q_f}^2 \Gamma_{\ell^+\ell^-}|_{m_\ell = m_{q_f}}$

 $m_{A'}$ < 2 GeV:

For **leptons**: $\Gamma_{\ell^+\ell^-} = \dots$ For **hadrons**: Use e^+e^- collider measurements of

$$R(s) = \sigma(e^+e^-
ightarrow ext{hadrons}) / \sigma(e^+e^-
ightarrow \mu^+\mu^-)$$

to determine partial decay width

$$\Gamma_{
m hadrons} = \Gamma_{\mu^+\mu^-} R(s=m_{A'}^2)$$

A' Branching Ratios

Benchmarks

Table 2: Derived quantities

Benchmarks not excluded by: mono- and dijet searches, limits on thermal relic density, direct and indirect DM searches, DM self-interactions, limits on ϵ and $m_{A'}$.

Dark Parton Shower

Differential collinear splitting probability

$$\frac{\alpha_{A'}}{2\pi} dx \, \frac{dt}{t} P_{\chi \to \chi}(x, t) \quad \text{with} \quad P_{\chi \to \chi}(x, t) = \frac{1 + x^2}{1 - x} - \frac{2(m_{\chi}^2 + m_{A'}^2)}{t} \quad (3)$$

Physical limits:

$$\begin{aligned} x_{\min} &\equiv m_{\chi}/E_0, \qquad x_{\max} \equiv 1 - m_{A'}/E_0, \qquad (4) \\ t_{\min}(x) &= m_{A'}^2 + 2(E_0^2 x(1-x) - \sqrt{x^2 E_0^2 - m_{\chi}^2} \sqrt{(1-x)^2 E_0^2 - m_{A'}^2}) \qquad (5) \\ t_{\max}(x) &= m_{A'}^2 + 2p_{\chi,\text{out}} \cdot k \big|_{k_{t,\max}} \qquad (6) \end{aligned}$$

Via Recursive Formalism

Single splitting (with $X = E_{\chi}/E_0$):

$$f_{\chi,1}(X) \equiv \frac{1}{\langle n_{A'} \rangle} \frac{\alpha_{A'}}{2\pi} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(X) \Theta(x_{\min} \le X \le x_{\max})$$

Next splittings:

$$f_{\chi,m+1}(X) = \int_{x_{\min}}^{x_{\max}} dx_m f_{\chi,1}(x_m) \, rac{f_{\chi,m}(X/x_m)}{x_m} \, \Theta(x_{\min} \leq X \leq x_{\max})$$

Full DM energy spectrum:

$$f_{\chi}(X) = \sum_{m=0}^{\infty} p_m f_{\chi,m}(X) \,,$$

where $f_{\chi,m}$ are energy distribution with exactly *m* emitted *A*'.

A' spectrum analogue!

Malte Buschmann (University of Mainz)

Via Mellin Transform

Mellin transform:

$$\{\mathcal{M}f\}(s) = \varphi(s) = \int_0^\infty x^{s-1}f(x)dx$$

Idea: Calculate moments of energy spectrum first First moment:

$$p_1 \langle X^s \rangle_{1A'} = e^{-\langle n_{A'} \rangle} \frac{\alpha_{A'}}{2\pi} \int_{x_{\min}}^{x_{\max}} dx \, x^s \, \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} P_{\chi \to \chi}(x) \equiv e^{-\langle n_{A'} \rangle} \, \langle n_{A'} \rangle \, \overline{X^s} \, .$$

Second moment:

$$p_{2} \langle X^{s} \rangle_{2A'} = e^{-\langle n_{A'} \rangle} \left(\frac{\alpha_{A'}}{2\pi} \right)^{2} \int_{x_{\min}}^{x_{\max}} dx \, x^{s} \int_{t_{\min}}^{t_{\max}} \frac{dt}{t} \int_{x_{\min}}^{x_{\max}} dx' \, x'^{s} \int_{t_{\min}}^{t} \frac{dt'}{t'} P_{\chi \to \chi}(x) P_{\chi \to \chi}(x')$$
$$\simeq e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^{2}}{2!} \overline{X^{s}}^{2}.$$

mth moment:

$$p_m \langle X^s \rangle_{mA'} = e^{-\langle n_{A'} \rangle} \frac{\langle n_{A'} \rangle^m}{m!} \overline{X^s}^m$$

Lepton Jets from Radiating Dark Matter

Via Mellin Transform

Then: Sum moments ...

$$\varphi(s+1) = \sum_{m=0}^{\infty} p_m \langle X^s \rangle_{mA'} = e^{-\langle n_{A'} \rangle (1-\overline{X^s})} \,.$$

... and use inverse Mellin transformation to obtain $f_{\chi}(X)$:

$$f_{\chi}(X) = rac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \, X^{-s} \, \varphi(s) \, .$$

Advantage: (Inverse) Mellin transform are fast and numerically stable when rewritten as a Fourier transform:

$$\{\mathcal{M}f\}(s) = \{\mathcal{F}f(e^{-x})\}(-is)$$

Comparison

Minor discrepancies due to:

- Integrations limits are not independent of x and t (Assumption that energy loss in each splitting is small)
- Neglect of *t*-dependence in splitting kernel $P_{\chi \to \chi}(x)$

Short A' lifetime: Prompt Search

- μ's have track in inner detector (transverse distance from beam < 122.5mm)
- $m_{\mu\mu} < 2 \,\, {
 m GeV}$
- Very soft muons: 6 GeV at trigger level (for 3 or more μ)
- LJ isolated in the calorimeter
- 2 LJs required
- \rightarrow high signal efficiency if $c\tau$ small
- \rightarrow rely on branching to muons

Long A' lifetime: Displaced Search

Based on ATLAS, 8 TeV, 20.3 fb⁻¹, arXiv:1409.0746

3 LJ types:

- Muonic (type-0): $\geq 2\mu$'s inside cone $\Delta R = 0.5$
- Mixed (type-1): $\geq 2\mu$'s + 1 jet inside cone $\Delta R = 0.5$
- Calorimeter (type-2): jet with small EM fraction

Parameter Scans

Parameter Scans

Detector	$A' \rightarrow e'e$	$A' \rightarrow \mu' \mu$	$A' \rightarrow \pi' \pi / K' K$	$A' \rightarrow \pi + \pi - \pi^{\circ}$	$A' \rightarrow K_{L}^{\circ}K_{S}^{\circ}$
LJ type	2 (calorimeter)	0 (muonic)	2 (calorimeter)	2 (calorimeter)	2 (calorimeter)
ID	track	track	track	track	(√)
ECAL	EM fraction	\checkmark	\checkmark	EM fraction	(√)
HCAL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Exclusion Limits

Summary

- Semi-analytic description of dark photon radiation via recursive integration and Mellin transform
 - \rightarrow Good agreement with Monte Carlo
- Recast of prompt and displaced ATLAS searches
 - \rightarrow Powerful limits on not yet tested parameter space
- Large improvement at 13 TeV expected

Backup

Backup

				13 Te	٧	
Benchmar	Benchmark A			109		
Benchmarl	Benchmark B			334		
All backgr	All background			30 ± 18		
data	data					
	0-0	0-1	0-2	1-1	1-2	2-2
Cosmic ray bkg.	15	0	14	0	0	11
8 TeV						
Muli-jet bkg.						
Benchmark A	14	3	104	0	14	200
Benchmark B	2.1	0.4	3.0	0	0.3	1.2
data	11	0	11	4	3	90
13 TeV						
Benchmark A	169					
Benchmark B	28					

Backup

Backup

Backup

Backup

