Episode Diphoton 750 GeV: A New Force Awakens

Doojin Kim

Phenomenology 2016 Symposium
University of Pittsburgh, Pittsburgh, May 9, 2016

based on W.S. Cho, DK, K. Kong, S.H. Lim, K.T. Matchev, J.C. Park, M. Park
Phenomenon: A New Force Carrier?

- **Diphoton “resonance” search and excess**

- (Mostly) **intended** to discover any resonance **directly** decaying into two photons

- Excess: $m_{\gamma\gamma} \sim 750$ GeV, $\Gamma \sim 45$ GeV

- Local (global) significance: $3.9\sigma (2.3\sigma)$

- Excess: $m_{\gamma\gamma} \sim 760$ GeV, narrow Γ favored

- Local (global) significance: $2.6\sigma (2.0\sigma) \rightarrow \sim 3.4\sigma$ local significance at Moriond
Phenomenon: A New Force Carrier?

- The blind men and an elephant

- Limited data statistics, unrevealed information (though more observables were presented at Moriond) + (un)trustable rumors

- Nevertheless, there has been active theoretical effort. → (mostly) standard resonance interpretation
Simple Resonance Interpretations

- Popular, hence most plausible(?) approach
Simple Resonance Interpretations

- Popular, hence most plausible(?) approach

- $m_{\gamma\gamma} = m_A \approx 750$ GeV

- Simplest event topology, thus natural(?) interpretation

- Spin 0 or spin 2 resonance (interpreted as a new force carrier) with EFT, 2HDM, SUSY, Extra-Dim, Compositeness, ...
Simple Resonance Interpretations

- Popular, hence most plausible(?) approach

- $m_{\gamma\gamma} = m_A \approx 750$ GeV
- Simplest event topology, thus natural(?) interpretation

- Spin 0 or spin 2 resonance (interpreted as a new force carrier) with EFT, 2HDM, SUSY, Extra-Dim, Compositeness, ...

- Tension?: (rather) large decay width – 6% of the particle mass [ATLAS-CONF-2015-081]
 - cf. Z boson – 2.7%, W boson – 2.6%, t quark – 1.1%, h boson – 0.3% (<2.7%)
 - No other decay modes have been observed.
Large Decay Width Is an Intrinsic Property?

- You might answer

- Well... it is just an early stage. Who cares for now? Let’s wait for more data coming.
Large Decay Width Is an Intrinsic Property?

You might answer

- Well... it is just an early stage. Who cares for now? Let’s wait for more data coming.

- Maybe, yes!
 - Parameter tuning: finding a set of parameters to accommodate all relevant phenomena (as most papers have done so far)
 - Invisible decays/a dark-matter signature
I answered

- Well... it is just an early stage. Who cares for now? Let’s wait for more data coming.

- Maybe, yes!
 - Parameter tuning: finding a set of parameters to accommodate all relevant phenomena (as most papers have done so far)
 - Invisible decays/a dark-matter signature

- Maybe, NO!!
 - “Non-resonance” interpretations: 750 GeV bump may NOT be originating from the decay of a 750 GeV resonance.
“Non-resonance” Interpretations

- Unusual approach

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
“Non-resonance” Interpretations

Unusual approach

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

“A → B → \chi”

“2-step cascade”
“Non-resonance” Interpretations

- Unusual approach

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
“Non-resonance” Interpretations

- Unusual approach

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
“Non-resonance” Interpretations

Unusual approach

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

- Diphotoon invariant mass distributions coming from
 - a heavier (than 750 GeV) resonance and
 - its non-minimal decays into the two photons plus (visible or invisible) χ’s
"Non-resonance" Interpretations

Unusual approach

- Diphoton invariant mass distributions coming from
 - a heavier (than 750 GeV) resonance and
 - its non-minimal decays into the two photons plus (visible or invisible) χ's

- Obviously, more new particles not in loops, (which could be matter particles), are predicted!

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Non-minimal Decay Scenarios

Why those three topologies?

- Study of decay topologies of 2 visibles (here γ) with # of invisibles (or less clean visibles) ≤ 2
- Shapes of invariant mass distributions of v_1, v_2
 \[\frac{dN}{dm} \equiv f(m; M_A, M_{B_i}, M_{X_j}) \]
- Investigation on endpoint (E), peak (P), and curvature (R_2)
 \[E \equiv \max\{m\} \]
 \[f(m = P) \equiv \max\{f(m)\} \]
 \[R_2 \equiv -\left(\frac{m^2}{f(m)} \frac{d^2f(m)}{dm^2}\right)_{m=P} \]

Non-minimal Decay Scenarios

Why those three topologies?

- Topologies with both the most singular peak structure and as large P/E as possible
Common Features

- Advantages
 - A broad width naturally arises.

![Graph](image-url)
Common Features

Advantages

- A **broad width** naturally arises.

- The peak position is typically **close to the kinematic endpoint**.
Common Features

Advantages

- A broad width naturally arises.
- The peak position is typically close to the kinematic endpoint.
- In low statistics, events near the peak are likely to emerge.
Common Features

Advantages

- A **broad width** naturally arises.

- The peak position is typically **close to the kinematic endpoint**.

- In low statistics, **events near the peak** are likely to emerge.

- Events off the peak are **easily buried** in the SM backgrounds.
Individual Features

- **Antler topology**

 \[
 f(m) \sim \begin{cases}
 \eta m, & 0 \leq m \leq e^{-\eta}E, \\
 m \ln(E/m), & e^{-\eta}E \leq m \leq E,
 \end{cases}
 \]

 \[
 E = \sqrt{\eta \left(M_{B_1}^2 - M_{\chi_1}^2\right) \left(M_{B_2}^2 - M_{\chi_2}^2\right) / (M_{B_1} M_{B_2})}, \\
 \eta = \cosh^{-1} \left[\left(M_{A}^2 - M_{B_1}^2 - M_{B_2}^2\right) / (2 M_{B_1} M_{B_2})\right].
 \]

 - The shape is **determined by two parameters**, \(E\) and \(\eta\).

 - In our benchmark study, \((A, B_i, \chi_i) = (\text{Scalar, Fermion, Fermion})\)

 \[
 \mathcal{L}_1 \sim AG^{\mu\nu}G_{\mu\nu}, \quad \mathcal{L}_2 \sim A\vec{B}_i B_i, \quad \mathcal{L}_3 \sim \vec{B}_i \sigma^{\mu\nu} \chi_i F_{\mu\nu}
 \]
Individual Features

Sandwich topology

\[
f(m) \sim \begin{cases}
\eta m, & 0 \leq m \leq e^{-\eta}E, \\
\ln(E/m), & e^{-\eta}E \leq m \leq E,
\end{cases}
\]

\[
E = \sqrt{\frac{\eta}{M_A^2 - M_{B_1}^2}(M_{B_2}^2 - M_{\chi_2}^2)/(M_{B_1}M_{B_2})}, \\
\eta = \cosh^{-1} \left[\frac{(M_{B_1}^2 + M_{B_2}^2 - M_{\chi_2}^2)/(2M_{B_1}M_{B_2})} \right].
\]

- \(f(m) \) is identical to that of the antler, but with different definitions of \(E \) and \(\eta \).

- In our benchmark study, \((A, B_1, B_2, \chi_i) = (U(1) \text{ Vector boson, Scalar, Fermion, Fermion})\)

\[
\mathcal{L}_2 \sim B_1 V^{\mu\nu} F_{\mu\nu}, \mathcal{L}_3 \sim B_1 \overline{B}_2 \chi_1, \mathcal{L}_4 \sim \overline{B}_2 \sigma^{\mu\nu} \chi_2 F_{\mu\nu}
\]
Individual Features

2-step cascade topology

- 2-step cascade topology
 \[f(m) \sim m, \]
 \[E = \sqrt{(M_A^2 - M_B^2)(M_B^2 - M_\chi^2)/M_B^2}. \]

- Famous triangular shape

- Only a single parameter, \(E \), determines the shape.

- In our benchmark study, \((A, B, \chi) = (U(1) \text{ Vector boson}, \text{Scalar}, U(1) \text{ Vector boson}) \)
 \[\mathcal{L}_2 \sim B A^{\mu \nu} F_{\mu \nu}, \quad \mathcal{L}_3 \sim B \chi^{\mu \nu} F_{\mu \nu} \]
Fit result: antler/sandwich

- Likelihood fit with full model functions, \(f(m) + f_{BG}(m) \), ATLAS cuts used
- Best-fit values: \(\eta = 0.032^{+0.030}_{-0.032}, E = 827^{+30}_{-37} \) GeV \([\chi^2 = 0.98] \)

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Fit result: 2-step cascade

- Same fit scheme as before
- Best-fit values: \(E = 810^{+20}_{-28} \text{ GeV} \) \([\chi^2 = 0.69]\)
Phenomenology

Other Observables

- $p_T^{\gamma\gamma}$ vs. $m_{\gamma\gamma}$

Antler

Sandwich

2-step cascade

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

- Singly-produced primary mother particle is assumed.
Other Observables

- $p_T^{\gamma\gamma}$ vs. $m_{\gamma\gamma}$

Antler

Singly-produced primary mother particle is assumed.

- **Antler topology:** small $p_T^{\gamma\gamma}$ is preferred in the region of large diphoton invariant masses.

- Sandwich

- 2-step cascade

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Other Observables

- $p_T^{\gamma\gamma}$ consistency check

$\mathcal{m}_{\gamma\gamma} = [700-840] \text{ GeV}$

Antler scenario shows a similar behavior in the diphoton p_T spectrum of the signal region.

[ATLAS at Moriond 2016]

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Conclusions

Summary

- ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
Conclusions

Summary

- ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, "non-resonance" interpretations are possible, e.g., cascade decays.
Conclusions

Summary

- ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, “non-resonance” interpretations are possible, e.g., cascade decays.
- Our scenarios can (generally) accommodate a (relatively) large width of the peak, and our model (antler) still seems consistent with the new released data.
Conclusions

Summary

- ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, “non-resonance” interpretations are possible, e.g., cascade decays.
- Our scenarios can (generally) accommodate a (relatively) large width of the peak, and our model (antler) still seems consistent with the new released data.
- (Even in the situation where the excess is washed away in the future or the proposed scenarios are ruled out) this can be a good exercise for other signals.
Conclusions

Summary

- ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, “non-resonance” interpretations are possible, e.g., cascade decays.
- Our scenarios can (generally) accommodate a (relatively) large width of the peak, and our model (antler) still seems consistent with the new released data.
- (Even in the situation where the excess is washed away in the future or the proposed scenarios are ruled out) this can be a good exercise for other signals.
- Keep open-minded and enjoy the 750 GeV diphoton excess!
Thank you!
Facts and issues

- 750 GeV (ATLAS) vs. 760 GeV (CMS) resonance in (relatively) clean diphoton channel
 → Just an accidental mismatch or not worth ambulance-chasing

- $\gamma\gamma + X$: not so clear with X, not unusual

- Only diphoton channel reports an excess
 → No significant excess in $ZZ / WW / ZZ / jj / \ell\ell$ around 750 GeV
 → $\gamma\gamma$ dominant decay? More statistics needed to observe excesses in other channels?

- Production cross section
 → ~15 signal events in ATLAS = ~5fb of cross section times branching fraction
 → Cf. gluon-induced 750 GeV higgs production cross section: $O(1)$ pb
 → Gluon/quark-induced production? ↔ Tension with no excess in the dijet channel
 → Photon-induced production (ex. VBF)? ↔ Tension with perturbativity?

- Rather large decay width!?
 → invisible decay modes (dark matter)
Parameter & error estimates

- Generating 10K pseudo data set
- via resampling of number-of-events (each bin), according to Poisson distribution with the mean value set to be the original data.
- Conducting the fit procedure for all pseudo data sets.
- Extracting mean values and 1σ confidence interval from the fitted parameter distributions.
- Given low statistics, our fit model (sig+bg) reproduces pseudo data samples well enough.
Parameter & error estimates

ATLAS, $\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$
bin width = 40 GeV

-2 ln $L/L_{\text{min}} = 1$
-2 ln $L/L_{\text{min}} = 4$
best fit
Mass projection: antler topology

Symmetric antler assumed, i.e., $B_1 = B_2$, $\chi_1 = \chi_2$

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Mass projection: sandwich topology

Same invisible particles assumed, i.e., $\chi_1 = \chi_2$

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Mass projection: 2-step cascade topology

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
p_T vs. invariant mass: antler topology

- In the rest frame of particle A

 - To reach the maximum invariant mass, two photons should be back-to-back, i.e., **no significant diphoton transverse momentum**.

 - In the rest frame of each B particle, photon and χ are emitted back-to-back.

 - For the events having the maximum invariant mass, the two χ's are likely to be back-to-back, i.e., **no significant transverse momentum of two χ's**.
Distinguishing scenarios using energy spectrum

- High statistics assumed
- Distributions with basic cuts
 - Resonance: energy peak = half the $m_{\gamma\gamma}$ resonance peak
 - Antler (red): (in general) energy peak ≠ half the $m_{\gamma\gamma}$ resonance peak [Agashe, Franceschini and DK, arXiv:1209.0772]
 - Sandwich (green) and 2-step cascade (blue): could develop a double-bump structure [Agashe, Franceschini and DK, arXiv:1309.4776]

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]
Improvement with spin effect

- Non-trivial spin correlation distorts the shape.
- Certain choices of spin correlation would develop more favorable shape by repopulating more events in a narrow region around the peak!

Antler/sandwich

2-step cascade