Episode Diphoton 750 GeV: A New Force Awakens

Doojin Kim

UF FLORIDA

Phenomenology 2016 Symposium University of Pittsburgh, Pittsburgh, May 9, 2016

based on W.S. Cho, DK, K. Kong, S.H. Lim, K.T. Matchev, J.C. Park, M. Park Phys. Rev. Lett. **116**, 151805 (2016) [arXiv:1512.06824]

Phenomenon: A New Force Carrier?

Diphoton "resonance" search and excess

□ (Mostly) **intended** to discover any resonance **directly** decaying into two photons

- **Ξ** Excess: $m_{\gamma\gamma} \sim 760$ GeV, narrow Γ favored
- □ Local (global) significance: $2.6\sigma(2.0\sigma) \rightarrow$
 - \sim 3.4 σ local significance at Moriond

University of Florida

in the

Phenomenon: A New Force Carrier?

-2-

The blind men and an elephant

- Limited data statistics,
 unrevealed information
 - (though more observables were presented at Moriond) + (un)trustable rumors
- □ Nevertheless, there has
 been active theoretical
 effort. → (mostly)
 standard resonance
 interpretation

University of Florida

Simple Resonance Interpretations

-3-

Popular, hence most plausible(?) approach

Simple Resonance Interpretations

Popular, hence most plausible(?) approach

 $\square m_{\gamma\gamma} = m_A \approx 750 \text{ GeV}$

Simplest event topology, thus natural(?)
 interpretation

Spin 0 or spin 2 resonance (interpreted as a new force carrier) with EFT, 2HDM, SUSY, Extra-Dim, Compositeness, ...

Simple Resonance Interpretations

Popular, hence most plausible(?) approach

 $\square m_{\gamma\gamma} = m_A \approx 750 \text{ GeV}$

Simplest event topology, thus natural(?)
 interpretation

Spin 0 or spin 2 resonance (interpreted as a new force carrier) with EFT, 2HDM, SUSY, Extra-Dim, Compositeness, ...

□ Tension?: (rather) large decay width – 6% of the particle mass [ATLAS-CONF-2015-081]

- ✓ cf. Z boson 2.7%, W boson 2.6%, t quark 1.1%, h boson 0.3% (<2.7%)
- ✓ No other decay modes have been observed.

Large Decay Width Is an Intrinsic Property?

• You might answer

□ Well... it is just an early stage. Who cares for now? Let's wait for more data coming.

Large Decay Width Is an Intrinsic Property?

You might answer

■ Well... it is just an early stage. Who cares for now? Let's wait for more data coming.

□ Maybe, yes!

- Parameter tuning: finding a set of parameters to accommodate all relevant phenomena (as most papers have done so far)
- ✓ Invisible decays/a dark-matter signature

Large Decay Width Is an Intrinsic Property?

I answered

□ Well... it is just an early stage. Who cares for now? Let's wait for more data coming.

□ Maybe, yes!

- Parameter tuning: finding a set of parameters to accommodate all relevant phenomena (as most papers have done so far)
- ✓ Invisible decays/a dark-matter signature

□ Maybe, NO!!

✓ "Non-resonance" interpretations: 750 GeV bump may NOT be originating from the decay of a 750 GeV resonance.

-9-

Unusual approach

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

Unusual approach

Unusual approach

• Unusual approach

University of Florida

Unusual approach

- Diphoton invariant mass
 distributions coming from
 - ✓ a heavier (than 750 GeV)
 resonance and
 - ✓ its non-minimal decays
 into the two photons plus
 (visible or invisible) χ's

University of Florida

Unusual approach

- Diphoton invariant mass
 distributions coming from
 - ✓ a heavier (than 750 GeV)resonance and
 - ✓ its non-minimal decays
 into the two photons plus
 (visible or invisible) χ's
- Obviously, more new particles
 not in loops, (which could be
 matter particles), are predicted!

University of Florida

Non-minimal Decay Scenarios

Why those three topologies?

□ Study of decay topologies of 2 visibles (here γ) with # of invisibles (or less clean visibles) ≤ 2
 □ Shapes of invariant mass distributions of v₁, v₂

$$\frac{dN}{dm} \equiv f(m; M_A, M_{B_i}, M_{\chi_j})$$

□ Investigation on endpoint (*E*), peak (*P*), and curvature (R_2)

 $E \equiv \max\{m\}$ $f(m = P) \equiv \max\{f(m)\}$

$$R_2 \equiv -\left(\frac{m^2}{f(m)}\frac{d^2f(m)}{dm^2}\right)_{m=P}$$

$\begin{array}{c c} & v_1 & v_2 \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$	$\begin{array}{c cccc} v_1 & v_2 \\ \hline A & B \\ \hline & & \chi \end{array}$ (b)	(c) $\begin{array}{c} v_1 & v_2 \\ A \\ \chi_1 & \chi_2 \end{array}$
$\begin{array}{c cccc} & v_1 & v_2 \\ \hline & & \\ A & B \\ \hline & & \\ (d) & \chi_1 & \chi_2 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} v_1 & v_2 \\ \hline A & B \\ \hline & & \\ (f) & \chi_1 & \chi_2 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} v_1 & v_2 \\ \hline A & B_1 & B_2 \\ \hline & & \\ \hline & & \\ (h) & \chi_1 & \chi_2 \end{array}$	$\begin{array}{c c} B_1 & \chi_1 \\ \hline \chi_1 \\ \hline & \\ B_2 & \chi_2 \\ \hline & \\ \chi_2 \\ \chi_2 \end{array}$

[Cho, DK, Matchev and Park, PRL (2014), arXiv:1206.1546]

University of Florida

Non-minimal Decay Scenarios

Why those three topologies?

[Cho, DK, Matchev and Park, PRL (2014), arXiv:1206.1546]

University of Florida

arXiv:1512.08378]

Advantages

□ A **broad width** naturally arises.

Advantages

□ A **broad width** naturally arises.

The peak position is typically close to the kinematic endpoint.

Advantages

□ A **broad width** naturally arises.

The peak position is typically close to the kinematic endpoint.

 In low statistics, events near the peak are likely to emerge.

Advantages

□ A **broad width** naturally arises.

- The peak position is typically close to the kinematic endpoint.
- In low statistics, events near the peak are likely to emerge.
- Events off the peak are easily buried in the SM backgrounds.

Individual Features

Antler topology

Antler topology [Han, Kim and Song, arXiv:0906.5009, Cho, DK, Matchev and Park, arXiv:1206.1546]

$f(m) \sim \bigg\{$	$\int \eta m$,	$0\leq m\leq e^{-\eta}E,$
	$m\ln(E/m)$,	$e^{-\eta}E\leq m\leq E,$

$$E = \sqrt{e^{\eta} (M_{B_1}^2 - M_{\chi_1}^2) (M_{B_2}^2 - M_{\chi_2}^2) / (M_{B_1} M_{B_2})},$$

$$\eta = \cosh^{-1} \left[(M_A^2 - M_{B_1}^2 - M_{B_2}^2) / (2M_{B_1} M_{B_2}) \right].$$

- □ The shape is **determined by two parameters**, *E* and η .
- $\Box \text{ In our benchmark study, } (A, B_i, \chi_i) =$

(Scalar, Fermion, Fermion)

 $\mathcal{L}_1 \sim A G^{\mu\nu} G_{\mu\nu}, \ \mathcal{L}_2 \sim A \bar{B}_i B_i, \ \mathcal{L}_3 \sim \bar{B}_i \sigma^{\mu\nu} \chi_i F_{\mu\nu}$

University of Florida

Individual Features

Sandwich topology

Sandwich topology [Agashe, DK, Toharia and Walker, arXiv:1003.0899, Cho, DK, Matchev and Park, arXiv:1206.1546]

$f(m) \sim \bigg\{$	$\eta m ,$	$0\leq m\leq e^{-\eta}E,$
	$m\ln(E/m)$,	$e^{-\eta}E\leq m\leq E,$

$$E = \sqrt{e^{\eta} (M_A^2 - M_{B_1}^2) (M_{B_2}^2 - M_{\chi_2}^2) / (M_{B_1} M_{B_2})},$$

$$\eta = \cosh^{-1} \left[(M_{B_1}^2 + M_{B_2}^2 - M_{\chi_1}^2) / (2M_{B_1} M_{B_2}) \right].$$

□ f(m) is identical to that of the antler, but with different definitions of *E* and η .

□ In our benchmark study, $(A, B_1, B_2, \chi_i) =$ (U(1) Vector boson, Scalar, Fermion, Fermion)

 $\mathcal{L}_2 \sim B_1 V^{\mu\nu} F_{\mu\nu}, \ \mathcal{L}_3 \sim B_1 \bar{B}_2 \chi_1, \mathcal{L}_4 \sim \bar{B}_2 \sigma^{\mu\nu} \chi_2 F_{\mu\nu}$

University of Florida

Individual Features

2-step cascade topology

□ 2-step cascade topology

 $f(m) \sim m$,

$$E = \sqrt{(M_A^2 - M_B^2)(M_B^2 - M_\chi^2)/M_B^2} \,.$$

- □ Famous triangular shape
- Only a single parameter, *E*, determines the shape.
- □ In our benchmark study, $(A, B, \chi) =$

(U(1) Vector boson, Scalar, U(1) Vector boson)

 $\mathcal{L}_2 \sim B A^{\mu\nu} F_{\mu\nu}, \ \mathcal{L}_3 \sim B \chi^{\mu\nu} F_{\mu\nu}$

University of Florida

-23-

Data Analysis

Fit result: antler/sandwich

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

□ Likelihood fit with full model functions, $f(m) + f_{BG}(m)$, ATLAS cuts used

D Best-fit values: $\eta = 0.032^{+0.030}_{-0.032}$, $E = 827^{+30}_{-37}$ GeV [$\chi^2 = 0.98$]

University of Florida

Data Analysis

Fit result: 2-step cascade

□ Same fit scheme as before

D Best-fit values: $E = 810^{+20}_{-28} \text{ GeV} [\chi^2 = 0.69]$

University of Florida

-25-

Other Observables

• $p_T^{\gamma\gamma}$ vs. $m_{\gamma\gamma}$

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

□ Singly-produced primary mother particle is assumed.

Other Observables

 $p_T^{\gamma\gamma}$ vs. $m_{\gamma\gamma}$

□ Singly-produced primary mother particle is assumed.

 \Box Antler topology: small $p_T^{\gamma\gamma}$ is preferred in the region of large diphoton invariant masses.

University of Florida

Other Observables

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

\Box Antler scenario shows a similar behavior in the diphoton p_T spectrum of the signal region.

University of Florida

Summary

□ ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.

Summary

- □ ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, "non-resonance" interpretations are possible, e.g., cascade decays.

Summary

- □ ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, "nonresonance" interpretations are possible, e.g., cascade decays.
- Our scenarios can (generally) accommodate a (relatively) large width of the peak, and our model (antler) still seems
 consistent with the new released data.

-31-

Summary

- □ ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, "nonresonance" interpretations are possible, e.g., cascade decays.
- Our scenarios can (generally) accommodate a (relatively) large width of the peak, and our model (antler) still seems
 consistent with the new released data.
- (Even in the situation where the excess is washed away in the future or the proposed scenarios are ruled out) this can be a good exercise for other signals.

Summary

- □ ATLAS and CMS collaborations have reported an interesting resonance-like excess in the diphoton channel around 750 GeV.
- While the (standard) resonance interpretation is popular, "nonresonance" interpretations are possible, e.g., cascade decays.
- Our scenarios can (generally) accommodate a (relatively) large width of the peak, and our model (antler) still seems
 consistent with the new released data.
- (Even in the situation where the excess is washed away in the future or the proposed scenarios are ruled out) this can be a good exercise for other signals.
- □ Keep open-minded and enjoy the 750 GeV diphoton excess!

Thank you!

Facts and issues

- □ 750 GeV (ATLAS) vs. 760 GeV (CMS) resonance in (relatively) clean diphoton channel
 - → Just an accidental mismatch or not worth ambulance-chasing
- $\Box \quad \gamma \gamma + X: \text{ not so clear with } X, \text{ not unusual}$
- □ Only diphoton channel reports an excess
 - \rightarrow No significant excess in ZZ / WW / Z γ / jj / $\ell\ell$ around 750 GeV
 - $\rightarrow \gamma \gamma$ dominant decay? More statistics needed to observe excesses in other channels?
- □ Production cross section
 - \rightarrow ~15 signal events in ATLAS = ~5fb of cross section times branching fraction
 - \rightarrow Cf. gluon-induced 750 GeV higgs production cross section: O(1) pb
 - \rightarrow Gluon/quark-induced production? \leftrightarrow Tension with no excess in the dijet channel
 - \rightarrow Photon-induced production (ex. VBF)? \leftrightarrow Tension with perturbativity?
- □ Rather large decay width!?
 - \rightarrow invisible decay modes (dark matter)

University of Florida

Parameter & error estimates

- Generating 10K pseudo data set
 via resampling of number-of-events (each bin), according to Poisson distribution with the mean value set to be the original data.
- Conducting the fit procedure for all pseudo data sets.
- Extracting mean values and 1σ
 confidence interval from the fitted
 parameter distributions.

Given low statistics, our fit model (sig+bg) reproduces pseudo data samples well enough.

Parameter & error estimates

University of Florida

-37-

Mass projection: antler topology

□ Symmetric antler assumed, i.e., $B_1 = B_2$,

 $\chi_1 = \chi_2$

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

University of Florida

Mass projection: sandwich topology

□ Same invisible particles assumed, i.e., $\chi_1 =$

χ2

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

University of Florida

Mass projection: 2-step cascade topology

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

University of Florida

• p_T vs. invariant mass: antler topology

- To reach the maximum invariant mass, two photons should be back-to-back, i.e., no significant diphoton transverse momentum.
- ✓ In the rest frame of each *B* particle, photon and χ are emitted back-to-back.
- ✓ For the events having the maximum invariant mass, the two χ 's are likely to be back-toback, i.e., no significant transverse momentum of two χ 's.

Distinguishing scenarios using energy spectrum

[Cho, DK, Kong, Lim, Matchev, Park and Park, arXiv:1512.06824]

- High statistics assumed
- Distributions with basic cuts
 - ✓ Resonance: energy peak = half the $m_{\gamma\gamma}$ resonance peak
 - ✓ Antler (red): (in general) energy peak \neq half the $m_{\gamma\gamma}$ resonance peak [Agashe, Franceschini and DK, arXiv:1209.0772]
 - Sandwich (green) and 2-step cascade (blue):
 could develop a double-bump structure
 [Agashe, Franceschini and DK, arXiv:1309.4776]

University of Florida

Improvement with spin effect

- □ Non-trivial spin correlation distorts the shape.
- Certain choices of spin correlation would develop more favorable shape by repopulating more events in a narrow region around the peak!

University of Florida

 $m_{\gamma\gamma}$