Probe the Electroweak Phase Transition at future colliders

Peisi Huang

University of Chicago/ Argonne National Laboratory

Work with A. Joglekar, B. Li, and C. Wagner, arxiv:1512.00068 and A. Long and L.T. Wang, 1605:tbd

> Pheno2016 University of Pittsburgh, 05/10/2016

Higgs Potential at High Temperature

At high temperature, the Electroweak Symmetry is restored

As the Universe cools down, the symmetry is broken. The Higgs undergoes a Phase Transition from zero to non-zero VEV What was the phase transition from unbroken phase to the broken phase look like?

Higgs Potential at Finite Temperature

Electroweak Phase Transition

- EWPT is difficult to study from cosmology (gravitational waves?)
- EWPT in the SM is 2nd order (unless the $m_h < 40$ GeV)
- New physics is required for a strongly first-order phase transition
- The new physics will alter the finite-temperature Higgs potential
- Higgs couples to SM particles differently, or couples to BSM particles
- Precision Higgs tests at the LHC and future colliders!

Example: extension with a heavy singlet α ^{*x*} α </sub> α ^{*n*} which is a cubic polynomial equation in *s*. We are interested in the limit where *as*²

Extend the SM to include a scalar singlet field Φ_s

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{2} \big(\partial_\mu \phi_s \big) \big(\partial^\mu \phi_s \big) - t_s \phi_s - \frac{m_s^2}{2} \phi_s^2 - \frac{a_s}{3} \phi_s^3 - \frac{\lambda_s}{4} \phi_s^4 - \lambda_{hs} \Phi^\dagger \Phi \phi_s^2 - 2 a_{hs} \Phi^\dagger \Phi \phi_s
$$

Integrate out the singlet if it is heavy
 Integrate out the singlet if it is heavy ω is the guarantee of ω the canonical interest ω in the limit ω in the limit ω the grate out the singlet into sin

$$
V \approx m_0^2 \Phi^\dagger \Phi + \left(\lambda_h - \frac{2 a_{hs}^2}{m_s^2}\right) \left(\Phi^\dagger \Phi\right)^2 + \frac{4 \lambda_{hs} a_{hs}^2}{m_s^4} \left(\Phi^\dagger \Phi\right)^3 \left[1+O(\lambda_{hs} \Phi^\dagger \Phi/m_s^2)\right]
$$

If the singlet is heavy, we can integrate it out. Then *^s* satisfies @*V /*@*^s* = 0 or In the high-temperature limit between the ⁴ and ⁶ terms. In order to justify dropping the higher order terms, *[|]m*²

$$
V_{eff} = \frac{1}{2}(m_0^2 + c_0T^2)\phi_h^2 + \frac{\lambda_{eff}}{4}\phi_h^4 + \frac{c_6}{8\Lambda_{eff}^2}\phi_h^6
$$

^s , (6) $m_0^2 > 0$ and $m_0^2 > 0$ *^s* + 2*hs† .* (7) $V(\Psi)$ *^s| |*2*hs†|*, there must λ^6 . Otherwise, the minimum of minimum of minimum occurs at λ . *.* (9) $V(\Phi)$ Φ λ_{eff} < 0 \bigg/C_6 > 0 *^Vef f* ⁼ ¹ (*m*² $\frac{1}{4}$ **c**e6 → \rightarrow $c_6 > 0$ $m_0^2 > 0$

^s ⁼ *^t^s* + 2*ahs†* \overline{a} @*µ^s* @*µ^s* ⇡ *m*⁴ *s* Possible to generate a first order EWPT

What to expect on colliders? and the trilinear coupling *ahs†^s* in particular will play an important role. The scalar potential is \overline{C} *as* 3 3 *^s* + *s* 4 4

- . Singlet can be directly produced on colliders through its mixing with the **Higgs** \mathcal{S} small (over the equation becomes linear, and its solution is solution is solution is solution is solution is so If the singlet is heavy, we can integrate it out. Then *^s* satisfies @*V /*@*^s* = 0 or
	- \bullet m_s = 525 GeV, sin² θ ~ 0.2, σ (pp -> S) ~ 0.9pb
	- can be searched from the heavy Higgs search channels at HL-LHC.
- The Higgs trilinear coupling will be modified. The range of the trilinear coupling that can be consistent with a first-order phase transition is about $1.3 - 2.8 \lambda_3$ SM in such a SM in such a theory arxiv:1512:00068 PH, A. Joglekar, B. Li, and C. Wagner without complete with the information of the large of the trimited in the limit of the limit t the small ratio. The equipolent w *mounted.* The range of the trim
b a first arder phase transition λ_2 SM in such a theory arxiv:1512:0 \sim The effective potential becomes potential becomes, \sim

$$
V \approx m_0^2 \Phi^{\dagger} \Phi + \left(\lambda_h - \frac{2a_{hs}^2}{m_s^2}\right) \left(\Phi^{\dagger} \Phi\right)^2 + \frac{4\lambda_{hs}a_{hs}^2}{m_s^4} \left(\Phi^{\dagger} \Phi\right)^3 \left[1 + O(\lambda_{hs} \Phi^{\dagger} \Phi/m_s^2)\right]
$$

singlet kinetic term modifies the wavefunction of the physical Higg be a tuning between *^h* and 2*a*² *hs/m*² *^s* such that *[|]*e↵*[|]* ⌧ *[|]h[|]* ⇡ *[|]*2*a*² *hs/m*² *^s|*. Otherwise, the minimum occurs at *†* ⇠ *^m*² *^s/hs*, where the approximation breaks down. The kinetic term gives a derivative self-interaction at kingtic term modifies the wavefunction of the physical between the ⁴ and ⁶ terms. In order to justify dropping the higher order terms, *[|]m*² *^s| |*2*hs†|*, there must therefore shifts all Higgs couplings universally • The singlet kinetic term modifies the wavefunction of the physical Higgs, and

$$
\frac{1}{2} (\partial_{\mu} \phi_s) (\partial^{\mu} \phi_s) \approx \frac{2a_{hs}^2}{m_s^4} (\Phi^{\dagger} \partial_{\mu} \Phi + \text{h.c.})^2 \Big[1 + O(\lambda_{hs} \Phi^{\dagger} \Phi / m_s^2) \Big]
$$

اب المسابق الم
المسابق المسابق الم Probe the trilinear coupling at HL-LHC, and the 100 TeV collider *^b*¯*bjj* 7.51⇥10⁹ 5.34⇥10⁴ 6.47 ⇥10⁴

with p_s $\frac{1}{2}$ TeV. and Shaughnessy Spria, figure from Barger, Everett, Jackson,

Spria, figure from Barger, Everett, Jackson. $5\ \sigma$ for $\lambda^3 \simeq 5 \lambda^3$ cm λ or $\lambda^3 \simeq 1.6\ \lambda^3$ cm \mathcal{L} by $\mathcal{S}(\mathcal{N})$ for \mathcal{N} are two detectors. Spria, figure from Barger, Everett, Jackson, $5\ \sigma$ for λ^3 \sim $5\lambda^3_{\rm SM}$, or λ^3 \sim 1.6 $\lambda^3_{\rm SM}$ *hhh/hhh* SM = 1,2,3.

arxiv:1512.00068 PH, A. Joglekar, B. Li, and C. Wagner
Analysis on developing analystics of future colliders, ass talk by N. Ghan and L. Lovis is found to be present in the *p^T* (*h*) distribution.

more analysis on double Higgs production at future colliders, see talk by N. Chen and I. Lewis. Re M^É Ie H Re MÉ+M@ For the Higgs decays, we consider the , ⌧ ⌧ , and *b*¯*b* tion at future colliders, see talk by N.

Probe the higgs coupling at HL-LHC *DE LITE INSES COUPHING ALTILELIC* tated by symmetries of the full theory. To a certain exthe the high d fermions, however the Standard Constantine of the Standard $mmin_{\sigma}$ of \Box in \Box coupling at HE-LITC $\frac{1}{2}$ is a shift in the wave-function renormalization ren and potential of the Higgs doublet *H* as well as operators of dimension six and higher. Most of these shifts

h and 2^{*m*} such that *h* $\frac{h}{2}$ *Vef f* = *Promy* ์
ล vefunction renorr *ef f* hization
A dard Model gauge representations of top partners are not necessarily fixed by the cancellation of $\mathbf r$ *Zh, m*²

$$
\frac{1}{2}(\partial_{\mu}\phi_s)(\partial^{\mu}\phi_s) \approx \frac{2a_{hs}^2}{m_s^4} \left(\Phi^{\dagger}\partial_{\mu}\Phi + \text{h.c.}\right)^2 \left[1 + O(\lambda_{hs}\Phi^{\dagger}\Phi/m_s^2)\right]
$$

Fractional change in all higgs couplings $\delta Z_h \approx \frac{2 a_{hs}^2 v^2}{4}$ supersymmetry [4] the scalar top partners are neutral under der Godinal change in d

s couplings
$$
\delta Z_h \approx \frac{2a_{hs}^2v^2}{m_s^4}
$$

*z*_{reak} | HC limit from the Current LHC limit from the Higgs signal $\delta Z_h \leq 0.14$ strength C_{11} uno pet $\Box C$ lino it from curient Life mint non likely strength broad δZ_h : *n||*

 \mathbf{P} HL-LHC expects to measure the Higgs couplings to percent level. *O*(2-10%)

Probe the hZZ coupling at CEPC/FCC-ee **56** HIGGS PHYSICS AT CEPC **56** HIGGS PHYSICS AT CEPC

- Lepton colliders are good for precision measurements
	- electroweak production, cross sections are predicted with (sub percent)precision
	- clean events, smaller background
- hZZ coupling can be measured to high precisions with lepton colliders.
	- hZZ coupling can be probed by the Higgsstralung process
	- large production cross section around 240 GeV to 250 GeV \sim 200 fb
	- expect 0.25% precision in hZZ coupling! 5 ab ⁻¹ CEPC pre-CRD

Even in the Z_2 limit, CEPC can start to probe the nature of the EWPT state \sim *F*¹ α ² limit CFPC can start to probe $\overline{1}$ Squared Coupling: *n*

 $\mathcal{L}_{\text{int}} = -\lambda_{hs} \Phi^\dagger \Phi \phi_s^2.$ Nightmare scenario, Curtain, Meade, and Yu, 2014.

Largest deviation for the trilinear coupling from its SM value is about 18% , Gupta, Rzehak, and Wells, 2013 $\frac{2.0 \int_{\text{gas}} 1 \times \text{cos} \sqrt{1 - \left(1 - \frac{1}{2} \right)} \cdot \frac{1}{2} \cdot \$ 2.0

> The portal coupling leads to a wavefunction the singlet model, \mathbb{Z}_2 renormalization of the Higgs field at 1-loop order

> > $\delta Z_h = \frac{1}{2}$

2

 $|\lambda_{hs}|^2$

 v^2

 $\left[1 + F(\tau_{\phi})\right]$

 M_h^2

 $16\pi^2$

 σ ^{Γ} N/ σ ^{*n* σ </sub> 1605. μ bd} PH, A. Long, L.T. Wang, 1605:tbd

conclusion

- In models exhibit a strong first order phase transition, modifications in the Higgs trilinear coupling and the hZZ coupling are expected
- It is very challenging to probe the trilinear coupling at the LHC
- hZZ coupling can be measured very well at lepton colliders, CEPC is almost able to cover the whole region consistent with a first order phase transition, in the models with a mix-in singlet
- A 100 TeV collider can measure the Higgs trilinear coupling, and can be complementary to a lepton collider.
- We may have an answer for the nature of the EWPT in 20 years!

• BACK UP SLIDES

Probe the trilinear coupling at HL-LHC, and the 100 TeV collider - double Higgs production \blacksquare the triscalar coupling from its SM value and study the e↵ects of this coupling on the *hh* cross-section and distributions with cut-based and multivariate methods. Our fit to the *hh* production matrix element at LHC(14) with 3 abit 3 a P_{A} $\bigcap_{n=1}^{\infty}$ $\bigcap_{n=1}^{\infty}$ \Box in the beginning the beginning of a new era in particle structure. physics. The next experimental challenge is the measure-*h*

- in SM The box and the triangle diagram interfere with each other destructively
- The strongest cancellation is around \sim 2.5 $\lambda_{3}^{\rm SM}$, the cross section is suppressed in the region consistent with a first order phase transition
- The m_{hh} distribution shifts to lower values for large λ_{3} expect more background

FIG. 4: The di↵erential cross section versus *Mhh* for arxiv:1512.00068 PH, A. Joglekar, B. Li, and C. Wagner

Gravitational Waves probes

preliminary

CEPC event rate

