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Why N = 2 SCFTs?

CFTs are great venues to study exact properties of QFTs, independent
of perturbative expansions;
N = 2 is an Ideal amount of SUSY: provides enough constraints, at
the same time theories have rich properties to be determined.
Approaches to the problem:

N = 2 SCFTs

Conformal Bootstrap Low Energy - CB geometries

But what does it mean to study these theories?
What we really want to do is to extract information on the matter
content and the flavor structure.
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Lagrnagian vs. Geometrical data

The most obvious approach would be:
write down the N = 2 Lagrangian: analyze its field content and
properties.

Problem
We do not have a Lagrangian description for numerous N = 2 SCFTs.

It turns out in N = 2 SUSY we have more powerful techniques: we
can study the geometry of the moduli spaces of vacua.
Analyzing the geometry of the Coulomb Branch (CB) provides us with
the structure of the underlying SCFT.
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Moduli spaces of vacua

In general, supersymmetric theories have extended moduli spaces of vacua:
Coulomb Branch (CB);
Higgs Branch

We will be focusing on Coulomb Branches, parametrized by vevs coming
from the vector multiplets:

↔ λα ↔ Aµ
φ ↔ λ̃α ↔ → 〈φ〉 = a

On CBs there is a residual gauge symmetry (unbroken by the vev(s)) that
lets us put some constraints on their geometries.

The coordinate used to describe the Coulomb Branch will be the gauge

invariant parameter u =
1
2
a2.

M. Lotito Classifying 4d rank-1 N = 2 SCFTs 9-11th May, 2016 4 / 16



Electric-Magnetic Duality (1)

We are interested in rank-1 Coulomb Branches, one complex dimensional
spaces. In this case the residual gauge symmetry is just a U(1).

The low energy theory has an N = 2 SUSY version of QED. Maxwell
theory can be written in a symmetric way between electric and magnetic
charges and fields.
The gauge coupling can be restated as:

τ ≡ 4πi
g2 +

θ

2π
,

that combines the two two real components g and θ, coming from:

L =
1

4g2FµνF
µν +

θ

16π
εµνρσF

µνF ρσ

It will turn out that τ is the the main object of study in our construction.
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Gauge coupling and monodromies

Now, we obtain equivalent theories by redefining electric and magnetic
charges/fields, this is encoded in transformations of τ of the from:

τ(u)→ aτ + b

cτ + d
Mγ =

(
a b
c d

)
∈ SL(2,Z)

On the Coulomb Branch singular points encode these transformations
of the gauge coupling:

u

x

γ > u?

The monodromy γ uniquely
characterizes the singularity
at u?.
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Description of τ(u)

There are several ways to describe the gauge coupling τ(u):

Complex torus:

τ

1

z

↔

Elliptic curve
y2 = x3 + f (u)x + g(u)
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Coulomb Branches - scale invariant case

We now have the ingredients to determine the geometric features of our
Coulomb Branches.

From constraints of N = 2 SUSY and EM Duality,
the allowed CB scale invariant geometries are complex cones:

•

γ < •

γ >

δ

with a discrete set of allowed deficit angles δ.{
δ π/3 π/2 2π/3 π 4π/3 3π/2 5π/3

∆(u) 6 4 3 2 3/2 4/3 6/5

}
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Scale invariant CB geometries

Allowed geometries correspond to Kodaira classification of elliptic curves:
Singularity Curve y2 = D(u) ord0(∆) M0 δ

II ∗ x3 + u5 6 10 ST π/3
III ∗ x3 + u3x 4 9 S π/2
IV ∗ x3 + u4 3 8 −(ST )−1 2π/3
I ∗0 x3 + τu2x + u3 2 6 −I π

IV x3 + u2 3/2 4 −ST 4π/3
III x3 + ux 4/3 3 S−1 3π/2
II x3 + u 6/5 2 (ST )−1 5π/3

In≥1 (x − 1)(x2 + (u/Λ)n) 1 n T n 2π (cusp)
I ∗n>1 x3 + ux2 + un+3Λ−2n 2 n + 6 −T n 2π (cusp)

Table: Col 1: Kodaira type of singularity. Col 2: Scale invariant SW curve. Col.
3: Mass dimension of u. Col.4: Order of the discriminant. Col.5: Monodromy
around singularity. Col.6: Deficit angle.

However, it can’t be the end of the story, there are multiple examples of
SCFTs with the same Kodaira singularity. → We need something more.
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Introducing (mass) deformations

From the Lagrangian perspective it is clear how to introduce
“deformations” → add mass terms for the hypermultiplets in the theory.

What do we do in general though, in cases where we don’t have necessarily
have a Lagrangian?
From the CFT point of view, introduce relevant N = 2 preserving
operators:

u=0

deformation

u1

u2 u3

M. Lotito Classifying 4d rank-1 N = 2 SCFTs 9-11th May, 2016 10 / 16



Constraints on allowed deformations

We see that introducing deformations splits the singularities on the CB

u=0

K0

deformation
u1

u2

u3

K1

K2

K3

We impose some constraints on the allowed ones:
Special Kähler condition: overall monodromy is the product of the
monodromies around each singularity (see figure below);
Dirac quantization condition: charges of the matter multiplets
becoming massless have to be commensurate.
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Determining the flavor structure

For the explicit calculation, deformations are introduced on the elliptic
curves:

y2 = x3 + f (u)x + g(u)→ y2 = x3 + f (u,Mα)x + g(u,Mα)

The position of the singularities is determined by the zeros of the
discriminant of the curve:

∆x(u) = 4f 3(u,Mα) + 27g2(u,Mα)

Mα are Weyl invariants of the flavor algebra. By introducing linear
masses which reconstruct these polynomials, we identify the flavor
structure of each deformed geometry.
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General set of allowed deformations

Safe deformations of regular, rank 1, scale-invariant CBs
Kodaira deformation flavor central charges Higgs branches
singularity pattern symmetry kF 12 · c 24 · a h1 h0

II ∗
{I110} E8 12 62 95 0 29
{I16, I4} sp(10) 7 49 82 5 16

III ∗
{I19} E7 8 38 59 0 17
{I15, I4} sp(6)⊕ sp(2) 5⊕ 8 29 50 3 8

IV ∗
{I18} E6 6 26 41 0 11
{I14, I4} sp(4)⊕ u(1) 4⊕ ? 19 34 2 4
{I1, I ∗1 } u(1) ? 14+h 29+h h ?

I ∗0
{I16} so(8) 4 14 23 0 5

{I12, I4} ' {I23} sp(2) 3 9 18 1 1
IV {I14} su(3) 3 8 14 0 2
III {I13} su(2) 8/3 6 11 0 1
II {I12} − − 22/5 43/5 0 0

with the assumption of a frozen IV∗ SCFT with central charge c ′

II ∗ {I2, IV ∗} su(2) ? 24c ′+h+4 24c ′+h+37 h ?

– — — — — — — — — — — — — — or — — — — — — — — — — — — — –
II ∗ {I12, IV ∗} G2 ? 24c ′+h+10 24c ′+h+43 h ?

III ∗ {I1, IV ∗} su(2) ? 16c ′+h+10
3 16c ′+h+73

3 h ?

with the assumption of a frozen III∗ SCFT with central charge c ′′

II ∗ {I1, III ∗} su(2) ? 18c ′′+h+5 18c ′′+h+38 h ?
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Mismatch in the Weyl groups? (1)

Alternative approaches:
I. Garcìa-Etxebarria and D. Regalado, arXiv:1512.06434;
O. Chacaltana, J. Distler, and A. Trimm, arXiv:1601.02077.

constructed theories that didn’t match our classification

however

our original assumption was that the symmetry group of the CB geometries
Γ = Weyl(F ).
We can instead interpret the symmetries as:

f ' Γ′′ n FΓ′ ,

a subgroup Γ′ ⊂ Γ is the Weyl group of the flavor algebra F and there are
additional factors Γ′′.
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Revised flavor assignments
Some rank 1 N = 2 SCFTs

Kodaira deformation flavor central charges Higgs branches
singularity pattern symmetry kF 12 · c 24 · a h1 h0

II ∗

{I110} E8 12 62 95 0 29
{I16, I4} C5 7 49 82 5 16
{I13, I ∗1 } A3 o Z2 14 42 75 4 9
{I12, IV ∗Q=1} A2 o Z2 14 38 71 3 ?

{I2, IV ∗Q=
√

2} u(1) o Z2 ? 33 66 1 1
{I1, III ∗} u(1) o Z2 ? 33 66 1 1

III ∗

{I19} E7 8 38 59 0 17
{I15, I4} C3 ⊕ A1 5⊕ 8 29 50 3 8
{I12, I ∗1 } A1 ⊕ (u(1) o Z2) 10⊕ ? 24 45 2 ?
{I1, IV ∗Q=1} u(1) o Z2 ? 21 42 1 1

III ∗ ∅ − 18 39 0 0

IV ∗

{I18} E6 6 26 41 0 11
{I14, I4} C2 ⊕ u(1) 4⊕ ? 19 34 2 4
{I1, I ∗1 } u(1) ? 15 30 1 1
IV ∗Q=

√
2 ∅ − 14 29 0 0

IV ∗Q=1 ∅ − 25/2 55/2 0 0

I ∗0
{I16} D4 4 14 23 0 5

{I12, I4} ' {I23} A1 3 9 18 1 1
IV {I14} A2 3 8 14 0 2
III {I13} A1 8/3 6 11 0 1
II {I12} ∅ − 22/5 43/5 0 0
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Thank you!
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