

Search for heavy top or bottom fermionic partners at CMS

Daniel Gonzalez

University of Hamburg

(On behalf of the CMS Collaboration)

Phenomenology 2016 Symposium

Heavy Fermionic Partner

- 10 10 (B Y) Tti $\sigma_{max}^{}$ (fb) (X T)13 TeV 10 400 600 800 2000 1000 1200 1400 1600 1800 m_O (GeV)
 - Production Mechanism
 - Single → Ewk
 - Pair → QCD
 - Very rich phenomenology

Often called 'vector like quarks' - left & right handed couplings

Not ruled out by Higgs

UH

- Motivated by many theories
 - Composite Higgs
 - Little Higgs
 - Warped extra dimensions, ...
- Extension of the SM with a 4th quark generation
 - Preferred couplings t, b & W, H, Z
 - Different multiplets & particles possible
 - T(-2/3), B(+1/3), X(+5/3), Y(-4/3)

10.1103/PhysRevD.88.094010

아버 黛 Jet-Tagging

- Jet-substructure one of the primary tools for heavy hadronic objects
 - Boosted objects reconstructed within wide jets
- Some examples: b-Tagging, t-Tagging, ...

CMS Results at 8 TeV

- In total 5 distinct hadronic and leptonic searches
 - Targeting all decay modes: bZ, bH, tW
- Discriminating variables H_T , S_T or M(llb)
- Using V & b-tagging to categorize events

CMS

- Combination
 - Good sensitivity in all decay channels
 - Stringent limits around 800 GeV

TT Search doi:10.1103/PhysRevD.93.012003 & arXiv:1509.04177

In total 4 distinct searches

UH

- Targeting all decay modes: tZ, tH, bW
- Leptonic, hadronic and decays into photons covered
- Discriminating variables H_T , S_T , H_{mass} or T_{mass}
- Using t, H & (sub-)b-tagging to categorize events

- Combination
 - All decay modes well covered
 - Limits around 800 GeV

CMS results at 13 TeV

XX Search with same sign di-leptons CMS PAS B2G-15-006

- Very clean channel with low SM-background
- 8 TeV limits of 800 GeV
- Require Σ jets + leptons > 4 and S_T > 900 GeV
- Veto Z-bosons

UH

Counting experiment

- Backgrounds
 - Most important: fake leptons estimated using a data-driven method
 - Charge mis-id leptons
 - Rare decays from MC e.g. WW, ZZ...

- Similar analysis strategy and selection to B2G-15-006
- 16 signal categories
 - Lepton flavor e or $\boldsymbol{\mu}$
 - # b-Tags (0,1,2,3+)
 - # W-Tags (0,1+)

- Main discriminant: min[M(l,b)]
- Benchmark point
 - BR of 50% bW, 25% tZ, tH

Single Production: T Search CMS PAS B2G-15-008

- First VLQ single production search in CMS
- Selection: S_T > 400 GeV, one lepton and jets ≥ 2
- Forward jet distinguished feature

UH

- Optimized for leptonic top decay and boosted H → bb
- Event reconstruction using Higgs-tagging

- CMS is searching for fermionic partners
- Broad search program for a rich
 phenomenology
- First results for single production at 13 TeV at CMS

Pheno 2016

 Results at 13 TeV with 2015 dataset already outperforming 8 TeV data

Backup

Pheno 201

- Performance curve for different ttagging algorithms
- Example of t-tagging variables for the CMS Top Tagger
 - Mass of the Jet
 - NSubjettiness

15

• 95% confidence limits on the T quark mass for different branching ratio, constrained to B(T \rightarrow bW) + B(T \rightarrow tH) + B(T \rightarrow tZ) = 1

$B(T \rightarrow bW)$	$B(T \to tH)$	$B(T \to tZ)$	Expected [GeV]	Observed [GeV]
0.50	0.25	0.25	743	750
1.00	0.00	0.00	853	876
0.80	0.20	0.00	812	824
0.80	0.00	0.20	808	828
0.60	0.40	0.00	778	780
0.60	0.20	0.20	772	778
0.60	0.00	0.40	768	774
0.40	0.60	0.00	727	731
0.40	0.40	0.20	707	714
0.40	0.20	0.40	< 700	< 700
0.40	0.00	0.60	< 700	< 700
0.20	any	any	< 700	< 700
0.00	any	any	< 700	< 700