Probing H^\pm with the μ_x boosted-bottom-jet tag

Keith Pedersen
(kpeders1@hawk.iit.edu)

ILLINOIS INSTITUTE
OF TECHNOLOGY

In collaboration with Zack Sullivan
To appear in arXiv:1606.xxxxx

Pheno 2016
Outline

1 2HDM — Why do we care?
 - The extended Higgs sector
 - Experimental signatures

2 What do we need to see H^\pm at the TeV scale?
 - A better b-tag ... μ_x

3 What could we see with the μ_x tag?
 - 14 TeV
 - 100 TeV
Two Higgs-doublet models (2HDM)

What questions precipitate two Higgs doublet models (2HDM)?

- How can we avoid fine tuning? Supersymmetry
- Why doesn’t the strong force violate CP? Axions
- Where’s all the antimatter? CP-violating Higgs sector

2HDM: Φ_1 and Φ_2

- 3 scalars (h, H, and H^\pm) and a pseudo-scalar (A)
- $\tan \beta \equiv \frac{v_2}{v_1}$

Strongly couple to top and bottom quarks; lots of b jets (b tags)!

$H^\pm \to tb$ 95% exclusion estimates

<table>
<thead>
<tr>
<th>m_{H^\pm} (GeV)</th>
<th>$\tan \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 600 700 800 900 1000</td>
<td>0.5 1 2 3 10 20 30 100</td>
</tr>
<tr>
<td>CL exclusion $\sigma^2 L dt = 300$ fb$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>\int 14 TeV LHC,</td>
<td></td>
</tr>
<tr>
<td>\int 14 TeV LHC,</td>
<td></td>
</tr>
</tbody>
</table>

JHEP1506(15)137
300 and 3000 fb$^{-1}$
14 TeV

JHEP1511(15)124
300 and 3000 fb$^{-1}$
14 TeV
(checkered/hatched)

3 and 30 ab$^{-1}$
100 TeV
(dark/light salmon)
The dominant channels

2HDM are strongly constrained by precision electroweak measurements

- No flavor-changing neutral current at tree-level
- **Type-I**: All quarks couple to only one of the doublets
- **Type-II**: u^i_R and d^i_R couple to opposite doublets (SUSY, axions, ...)
- The 125 GeV scalar *really* looks like a Standard Model Higgs.

$$H_{SM}^0 = -R (\alpha - \beta) \begin{pmatrix} H \\ h \end{pmatrix}$$

- We live near **alignment** ($H_{SM}^0 = h$) ... no HEAVY \rightarrow light Higgs decays.

We assume that heavy Higgs mass spectrum is mostly degenerate

- A natural outcome of the MSSM 2HDM, in the alignment limit
- Suppresses decays *between* heavy Higgs

$$B(H/A \rightarrow t\bar{t}) \approx 1 \quad \tan(\beta) \gg 6$$
$$B(H/A \rightarrow b\bar{b}) \approx 1 \quad \tan(\beta) \ll 6$$
$$B(H^{\pm} \rightarrow tb) \approx 1 \quad \forall \tan(\beta)$$
$$B(H^{\pm} \rightarrow \tau\nu) = \mathcal{O}(1\%) \quad \tan(\beta) \gg 6$$
Outline

1 2HDM — Why do we care?
 • The extended Higgs sector
 • Experimental signatures

2 What do we need to see H^\pm at the TeV scale?
 • A better b-tag ... μ_x

3 What could we see with the μ_x tag?
 • 14 TeV
 • 100 TeV
Light jets dominate channels with boosted b jets

- Probability to tag light flavors *rises dramatically* for boosted jets!
 - Light jet = no b or c hadrons; experiments can’t differentiate b-initiated jets and $g \to b\bar{b}$ jets.
- Huge (40%) systematic uncertainties in tagging efficiency can dominate experimental results/exclusions.
- Many exotic searches rely on seeing final states with b jets!

[CMS PAS BTV-09-001] Fig. 12

Maintaining 50% b jet efficiency

[ATL-PHYS-PUB-2014-014] Fig. 14b
The μ_x boosted-b tag

- **CM**: The muon is emitted with speed $\beta_{\mu,\text{cm}}$ at angle θ_{cm}.
- **Lab**: Muon is detected at angle θ_{lab} w.r.t. the centroid of the decay subjet (boosted by γ_B).

\[p_{\text{subjet}} = p_\mu + p_\nu + p_{\text{core}} \]

\[x \equiv \gamma_B \tan(\theta_{\text{lab}}) = \frac{\sin(\theta_{\text{cm}})}{\kappa + \cos(\theta_{\text{cm}})} \]

\[\kappa \equiv \beta_B / \beta_{\mu,\text{cm}} \]

\[x = \tan(\theta_{\text{cm}}/2) \quad \text{(when } \kappa \rightarrow 1) \]
The μ_x boosted-b tag

We want a boosted b hadron

$$\gamma_B \gtrsim 60 \gg \gamma_{\mu,\text{cm}}$$

$$x \equiv \gamma_B \tan(\theta_{\text{lab}}) = \frac{\sin(\theta_{\text{cm}})}{\kappa + \cos(\theta_{\text{cm}})}$$

$$\kappa \equiv \beta_B / \beta_{\mu,\text{cm}}$$

$$x = \tan(\theta_{\text{cm}}/2) \quad \text{(when } \kappa \to 1 \text{)}$$
x is mostly an angular cut

The μ_x tag is two major cuts to identify b-like decays

\[x \leq 3 \]

\[p_{\text{subj}} = p_\mu + p_\nu + p_{\text{core}} \]

\[\frac{p_{\text{subj}}}{p_{\text{jet}}} > 0.5 \]

For detailed explanation, see 1511.05990:

- p_ν is estimated from muon
- x is robust to measurement error in muon p_T
- $x \leq 3$ is a cut on the angle between the μ and the D remnants (core)

The maximum angle ξ_{max} scales linearly with E_{core} ($m_D = 1.9$ GeV)

- "Soft" muons must fall in a tight cone:
 \[\xi_{\text{max}}^{\text{soft}} = 3 \frac{m_D}{E_{\text{core}}} \]

- "Hard" muons have more breathing room:
 \[\xi_{\text{max}}^{\text{hard}} = 18 \frac{m_D}{E_{\text{core}}} \]
Boosted kinematics turn on at 300 GeV.

Light jets classified by hadronic origin of tagging muon (light-heavy are \(b\) jets from gluon splitting — rapidity handle?)

Signal efficiencies
- \(~14\%\) of \(b\)-jets
- \(~6.5\%\) of \(c\)-jets

Light jet **fake rate
- Light-light \(\mathcal{O}(0.1\%)\)
- All light \(\mathcal{O}(0.6\%)\)

Pileup helps (a bit)
- **Solid**: no pileup
- **Dotted**: \(\mu = 40\)
Outline

1. 2HDM — Why do we care?
 - The extended Higgs sector
 - Experimental signatures

2. What do we need to see H^\pm at the TeV scale?
 - A better b-tag ... μ_x

3. What could we see with the μ_x tag?
 - 14 TeV
 - 100 TeV
$H^\pm \to tb$ with the μ_x tag

μ_x is well-suited for detecting TeV-scale H^\pm in a semi-leptonic channel:

$$pp \to t_{l^\pm}(b)H^\pm \to t_{l^\pm}(b)t_{\text{had}}b_{\mu_x}$$

- Boosted-b via μ_x tag ($R_{kt^{-1}} = 0.4$) — high purity across TeV range
- Boosted hadronic top using existing substructure tags ($R_{CA} = 0.8$) (CMS PAS JME-09-001 / CERN-EP-2016-010)
- Leptonic top via isolated lepton and normal track-based b-tag (much lower p_T than boosted b, tag is more stable).
- **caveat:** E_T is heavily smeared by neutrino intrinsic to the μ_x tag, minimally useful for top reconstruction.
- H^\pm is very heavy, minimal transverse boost; require $\Delta Z < 0.4$:

$$\Delta Z = \sqrt{\left(\frac{p^b_T - p^t_T}{p^b_T + p^t_T}\right)^2 + \cos(\Delta \phi)^2}$$
Extending the mass reach at 14 TeV

FeynRules → MadGraph5 → PYTHIA 8 → Delphes 3 (w/ FastJet 3)

- $bg \rightarrow H^\pm t$ is a significant contribution to σ
- $ttj(j)$ is dominant BG, followed by $ttbb/ttcc$ and $ttb(j)/ttc(j)$
- Our results look like an extension of Craig et al. above a TeV

14 TeV cross section is too small to plug “the wedge” ... 100 TeV?
A case for 100 TeV

- In 100 TeV pp collisions, H^\pm gets a strong kick from the beam. Discard "back-to-back" ΔZ cut.
- Background is still dominated by same QCD processes as 14 TeV, use $\Delta \eta$ cuts to suppress t-channel.

\[\tan \beta \]

\[M_{H^+} \text{ (TeV)} \]

\[300 \text{ fb}^{-1} \]

\[3000 \text{ fb}^{-1} \]

\[95\% \text{ C.L. exclusion} \]

preliminary

\[\sqrt{s} = 100 \text{ TeV} \] provides access to useful 2HDM parameter space.

- It’s important to use realistic b-tagging fake rates (even at 14 TeV)!

14 TeV

100 TeV
Thank you for your attention!
μ_x tags applied to b, c, and light initiated jets

Keith Pedersen (IIT) H^\pm with μ_x boosted-bottom-jet tagging Pheno 2016