Recent QCD Results from ATLAS at Phenomenology 2016

Pekka K. Sinervo, FRSC
Department of Physics
University of Toronto
Representing the ATLAS Collaboration

10 May 16
1. Introduction to the ATLAS experiment
2. Overview of most recent QCD measurements
 1. The inelastic pp cross section at 13 TeV
 2. Diffractive dijet production with a large rapidity gap
 3. Z boson event shape
 4. Isolated inclusive photon cross section
 5. b quark pair production
3. Summary & Conclusions
ATLAS has published **60** jet, soft QCD and direct photon studies.

Extensive body of work, e.g.
- Inclusive jet production at 7, 8 and 13 TeV
- Jet fragmentation at 8 TeV

Working to better understand
- high-order effects
- non-perturbative “soft” regime

Recent QCD Results from ATLAS
Recent ATLAS QCD Results

Inelastic pp cross section
• No fundamental theory to make predictions
• Important for other studies of pp interactions

Diffractive dijet production with large rapidity gaps
• Probes our understanding of diffractive and doubly-diffractive processes

Z boson event shapes
• Underlying event structure in Z boson events
• Important for understanding interplay of soft and hard QCD

Inclusive photon differential cross section
• New measurement at 8 TeV
• Test of QCD and understanding of proton gluon density

b-quark pair production differential cross section
• Important to understand QCD b-quark production

Soft QCD

High p_T QCD
1. Inelastic Cross Section

The pp inelastic cross section characterizes the strong interaction
- But cannot be derived from first principles
- Constraints come from general considerations

Dominated by low transverse momentum processes
\[\xi \equiv \frac{M_X^2}{s} \]
- Analysis uses Minimum Bias Trigger System (MBTS)
- Counts single and double-diffractive events

Pekka Sinervo
Recent QCD Results from ATLAS

ATLAS-CONF-2015-038

First ATLAS Candidate Collision Event
Inelastic Cross Section

Performed a special low-luminosity run

\[\sigma_{\text{inel}}(\xi > 10^{-6}) = \frac{N - N_{BG}}{\varepsilon_{\text{trig}} \times L} \times \frac{1 - f_{\xi < 10^{-6}}}{\varepsilon_{\text{sel}}} \]

- Use ratio of events passing single-sided and inclusive selection
- Donnachie & Landshoff model is best match to \(n_{\text{MBTS}} \) distribution – chosen as default model
- Extrapolate fiducial cross section to total phase space

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Rel. unc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of selected events (N)</td>
<td>4159074</td>
<td>–</td>
</tr>
<tr>
<td>Number of background events (N_{BG})</td>
<td>43512</td>
<td>±100 %</td>
</tr>
<tr>
<td>Luminosity [\mu b^{-1}] (L)</td>
<td>62.9</td>
<td>±9 %</td>
</tr>
<tr>
<td>Trigger efficiency (\varepsilon_{\text{trig}})</td>
<td>99.7 %</td>
<td>±0.1 %</td>
</tr>
<tr>
<td>MC Correction factor ((1 - f_{\xi < 10^{-6}}/\varepsilon_{\text{sel}})</td>
<td>0.993</td>
<td>±0.5 %</td>
</tr>
</tbody>
</table>

\[\sigma_{\text{inel}} = 73.1 \pm 0.9(\text{exp.}) \pm 6.6(\text{lum.}) \pm 3.8(\text{extr.}) \text{ mb} \]
2. Dijets with Rapidity Gaps

Diffractive dijet production probes proton structure

- Measurements at ep and hadron colliders not reconciled
- Use existence of “rapidity gap” to isolate process
- Measure ξ, fraction of energy lost by p, by summing over all particles

Used dedicated low-L run

- Events free of multiple pp interactions
- Collected 6.8 nb$^{-1}$ at 7 TeV
- Select events with
 - 2 jets with $p_T > 20$ GeV and $|\eta|<2$
 - Use neutrals with $p_T>200$ MeV or charged particles with $p_T>500$ MeV to delimit gap
 - Gap $\Delta \eta^F$ is largest empty η interval on either side up to $|\eta|=1.7$ on other side
Dijets with Rapidity Gaps

Data shows large non-diffractive component
- Dominates at small $\Delta\eta^F$ and high ξ
- Model-dependent analysis provides some constraints on relative mixture

Translate into measurement of the absorption of non-diffractive σ
- Use POMWIG MC to describe non-diffractive component, with rapidity gap survival probability

$$S^2 = 0.16 \pm 0.04 \text{(stat.)} \pm 0.08 \text{(exp. syst.)}$$
- Consistent with CMS and Tevatron measurements (but large uncertainty)
- Note that PYTHIA 8 can describe large $\Delta\eta^F$ data without suppression factor

3. Event Shapes in Z Boson Events

Underlying event (UE) in pp collisions important feature
- Many studies at Tevatron & LHC
- Important for understanding of hard-scattering process
- Models involve multi-parton interactions
- Rely on “tuning”

Use Z boson events
- Remove Z decay
- Measure charged track event observables sensitive to UE
- Study 4 observables as function of Z boson p_T
 - 0-6 GeV
 - 6-12 GeV
 - 12-25 GeV
 - > 25 GeV

\[B \equiv \sum p_T \cdot e^{-|\eta|} \quad \text{Beam Thrust} \]
\[T \equiv \max_{\hat{n}_T} \frac{\sum |\vec{p}_T \cdot \hat{n}_T|}{\sum p_T} \quad \text{Transverse Thrust} \]
\[S \equiv \frac{\pi^2}{4} \min_{\vec{n}=(n_x,n_y,0)} \left[\frac{\sum |\vec{p}_T \times \vec{n}|}{\sum p_T} \right]^2 \quad \text{Spherocity} \]
\[F \equiv \frac{\lambda_1}{\lambda_2} \quad \text{where } \lambda_i \text{ eigenvalues of} \]
\[M^{lin} \equiv \sum_i \frac{1}{p_{T,i}} \begin{pmatrix} p_{x,i}^2 & p_{x,i}p_{y,i} \\ p_{x,i}p_{y,i} & p_{y,i}^2 \end{pmatrix} \]

Submitted to EPJC, ArXiv:1602.08980
Recent QCD Results from ATLAS

Pekka Sinervo

10

Analysis used 1.1 fb\(^{-1}\) of 7 TeV collisions
- Identified Z bosons via \(\mu^+\mu^-\) & e+e- decays
- Removed Z boson tracks
- Corrected for pileup

See evolution with Z boson \(p_T\)
- Expect to see effects of Z+jet production in highest \(p_T\) bin
- Three lowest \(p_T\) bins have similar behaviour

Next step: compare with models
Compared to predictions:
- **SHERPA 2.2.0** at NLO with NNPDF 3.0
- **PYTHIA 8.212** at LO with NNPDF2.3
- **HERWIG 7.0** at NLO with MMHT2014

Employed default configurations
- **PYTHIA 8.212** used Monash 2013 tune

Overall conclusions
- **HERWIG** best with variables depending explicitly on # charged particles
- **PYTHIA** tends to do better on variables independent of # charged particles
- Low p_T sample has greatest variance
- Generally, all generators do better in the high p_T samples
- Overall, **PYTHIA** and **HERWIG** do better over most kinematic regimes
4. Inclusive Photon Cross Section

Isolated photon production important SM process
- Probes interplay of EW and QCD processes
- Probes the gluon PDF in proton
- Important background source to understand for other analyses

Measured differential cross section in 20 fb\(^{-1}\) of 8 TeV data
- Require isolation in \(\eta-\phi\) cone R=0.4
- Cross section shown in 4 different |\(\eta\)| bins
- Compared with JETPHOX generator with CT10 PDFs
- Overall agreement appears reasonable
Recent QCD Results from ATLAS

Inclusive Photon Cross Section

Detailed comparisons of differential cross sections against predictions by

- JetPhox CT10 – NLO
- PEtER
- PYTHIA
- SHERPA

PEtER best description

- Generally poor agreement in shape with other MC predictions
b-quark pair production first heavy flavour creation process studied

- Mixture of production diagrams
- Tests QCD heavy flavour calculations

Measured differential cross section in 4.2 fb$^{-1}$ of 7 TeV data

- Required two jets with $p_T > 20$ GeV and $|\eta| < 2.5$, both tagged as b-jets
- Required leading jet $p_T > 270$ GeV

Compared with POWHEG+PYTHIA, MC@NLO, PYTHIA AND SHERPA predictions

- Reasonable agreement with POWHEG
- Generally poor agreement with other calculations, both in shape and normalization

To be submitted: ATLAS-STDM-2013-03
Summary and Conclusions

Recent ATLAS measurements continue to probe QCD in both its non-perturbative and perturbative regime

1. Inelastic pp cross section
2. Diffractive dijet production with large rapidity gaps
3. Z boson event shapes
4. Inclusive photon differential cross section
5. b-quark pair production differential cross section

Give a “half-glass-full” picture of our understanding of QCD
• See good agreement in many challenging areas
• Still have discrepancies to resolve, especially soft QCD processes

Much to look forward to with next LHC data-taking run
Recent QCD Results from ATLAS

Backup Slides
ATLAS is one of 2 general-purpose experiments at the LHC

Collected data at 3 pp collision energies

- 7 TeV in 2011 \rightarrow 4.6 fb$^{-1}$
- 8 TeV in 2012 \rightarrow 20.2 fb$^{-1}$
- 13 TeV in 2015 \rightarrow 3.2 fb$^{-1}$

Significant changes in running condition

- Increased pile-up
- Moved from 50 ns to 25 ns bunch spacing
High pT Z Boson Event Shapes

Event shape distributions for Z boson $p_T>25$ GeV

Pekka Sinervo
More on b Quark Pair Production

Measured b-quark purity using b-tagging algorithm templates

- Employed likelihood fits to b and light flavour contributions

Measured differential cross sections in various variables
Inclusive Photons at 13 TeV

Made preliminary measurement of inclusive photon cross section at 13 TeV

- Similar analysis to 8 TeV
- Normalized background using non-isolated photon candidates
Inclusive Photon Cross Section

Comparison with JETPHOX, PYTHIA AND SHERPA generators