## **Analytic control of jet substructure**

Laís Schunk

IPhT - CEA Saclay

Based on a paper with Gregory Soyez and Mirinal Dasgupta arXiv:1512.00516, to appear on JHEP

Pheno 2016 - May 10, 2016

#### Outline

- 1 Introduction: jets at the LHC
- 2 Jet substructure: looking inside the jet
- Control of jet substructure: an analytical understanding
- 4 Conclusion and prospectives

#### Outline

- 1 Introduction: jets at the LHC
- 2 Jet substructure: looking inside the jet
- Control of jet substructure: an analytical understanding
- 4 Conclusion and prospectives

#### Introduction

- QCD partons produced in collisions cannot be directly observed;
- Due to QCD collinear divergence, their final state are complex collimated structures called *jets*;



ATLAS collaboration

• Jets are used very frequently in LHC analyses.

## Definition of jet

- A jet definition is how one clusters particles into jets;
- Composed of a *clustering algorithm* (e.g. anti- $k_t$ ) and its *parameters* (e.g. the jet radius R);



M. Cacciari, G. P. Salam and G. Soyez (2008)

5 / 20

#### Outline

- Introduction: jets at the LHC
- 2 Jet substructure: looking inside the jet
- Control of jet substructure: an analytical understanding
- 4 Conclusion and prospectives

## Boosted heavy particles

- ullet At the LHC o boosted heavy particles  $(p_t\gg m)$ 
  - $\rightarrow$  decay in very collimated final states
  - ightarrow clustered into a single jet



 $\bullet$  Characteristic opening angle of the jet is  $\theta \propto \frac{m}{\rho_t}.$ 

## QCD background

• Jets originated by partons (g or q) are collimated for any  $p_t$ ;



# QCD background

• Jets originated by partons (g or q) are collimated for any  $p_t$ ;



• How to discriminate QCD jets from  $Z/W/H \rightarrow hadrons$  jets?

#### Jet substructure

In order to identify a jet we need to access the jet substructure
 → to look inside the jet;





J. Thaler and K. V. Tilburg (2010)

- Different techniques are available:
  - Find hard cores (1 for QCD, 2 for bosons);
  - Constrain the soft gluon radiation.

#### Jet substructure

In order to identify a jet we need to access the jet substructure
 → to look inside the jet;





J. Thaler and K. V. Tilburg (2010)

- Different techniques are available:
  - Find hard cores (1 for QCD, 2 for bosons);
  - ② Constrain the soft gluon radiation. ← focus of this talk

See e.g. M.Dasgupta, A. Fregoso, S. Marzani and G.Salam (1307.0007) for similar study in core finders.

9 / 20

## Jet shapes

• Jet-shapes: observables which are functions of the jet constituents  $v(p_1^{\mu}, p_2^{\mu}, ..., p_n^{\mu}) \rightarrow$  measure the radiation within the jet;

#### Energy correlation

$$\begin{split} &C_2 = e_3/(e_2)^2, \\ &e_2 = \frac{1}{p_t^2 R^2} \sum_{i < j \in jet} p_{t,i} p_{t,j} \theta_{ij}^2, \\ &e_3 = \frac{1}{p_t^3 R^6} \sum_{i < j < k \in iet} p_{t,i} p_{t,j} p_{t,k} \theta_{ij}^2 \theta_{ik}^2 \theta_{jk}^2. \end{split}$$



## Jet shapes

• **N-subjettiness** with axes  $a_1, ..., a_N$ 

$$\tau_{21} = \frac{\tau_2}{\tau_1}, \qquad \tau_N = \frac{1}{p_{t,jet}R^2} \sum_{i \in jet} p_{t,i} \min_{a_i...a_N} (\theta_{ia_1}^2, ..., \theta_{ia_N}^2).$$

• Mass-drop with subjets  $j_1$  and  $j_2$ 

$$\mu_p^2 = \max(m_{j1}^2, m_{j2}^2)/m_j^2.$$



#### Outline

- Introduction: jets at the LHC
- 2 Jet substructure: looking inside the jet
- Control of jet substructure: an analytical understanding
- 4 Conclusion and prospectives

## Control of jet substructure

- Understand differences/similarities from a first-principle analytical study;
- Compute physical quantities (cross-section, efficiency curves) with a cut v<sub>cut</sub> on jet shape;
- We assume  $v_{cut} \ll 1$ .

## Lund diagrams

• Lund diagram: graphical representation of emissions in  $z\theta$  vs.  $1/\theta^2$ .



# Structure of the results (QCD background)

- We consider boosted jets of a given mass,  $\rho = m^2/p_t^2R^2 \ll 1$ ;
- Approximation: emissions are strongly ordered in mass and angle;
- ullet Independent emissions o constraints as an exponential factor.



# Structure of the results (QCD background)

• For a jet of a given mass + a cut in the jet shape  $v_{cut}$ :



# Structure of the results (QCD background)

• For a jet of a given mass + a cut in the jet shape  $v_{cut}$ :



Now all we need is to find  $v(\rho, z_1, z_2, \theta_2)$ .

# Results (QCD background)

#### N-subjettiness



$$R_{\tau}(z_1) = \frac{\alpha_s C_R}{2\pi} \left[ \frac{L_{\tau}^2}{2} + L_{\rho} L_{\tau} \right] + \frac{\alpha_s C_A}{2\pi} \frac{L_{\tau}^2}{2}$$

$$L_X = \log(1/X)$$

#### Mass drop



$$\begin{split} R_{\mu_{1/2}^2}(z_1) &= \\ \frac{\alpha_s C_R}{2\pi} \left[ \frac{L_{\mu}^2}{2} + L_{\rho} L_{\mu} \right] \\ - \frac{\alpha_s C_R}{2\pi} \frac{L_1}{2} (L_{\rho} - L_1) \\ + \frac{\alpha_s C_A}{2\pi} \frac{(L_{\mu} - L_1)^2}{2\pi} \end{split}$$

### Energy correlation



$$R_{C^{2}}(z_{1}) = \frac{\alpha_{s}C_{R}}{2\pi} \left[ \frac{L_{e}^{2}}{2} + (L_{e} - L_{\rho} + L_{1})L_{1} \right] + \frac{\alpha_{s}C_{A}}{2\pi} \frac{1}{2} (L_{e} - L_{\rho} + L_{1})^{2}$$



#### **ROC** curves

- Probability that  $v_{QCD} < v_{cut}$  vs. probability that  $v_{sig} < v_{cut}$ ;
- $C_2$  is the most efficient, and  $\tau_{21}$  more efficient than  $\mu^2$  (more delicate call).



#### **ROC** curves

- Probability that  $v_{QCD} < v_{cut}$  vs. probability that  $v_{sig} < v_{cut}$ ;
- $C_2$  is the most efficient, and  $\tau_{21}$  more efficient than  $\mu^2$  (more delicate call).



Good description of the order between shapes.

### Outline

- Introduction: jets at the LHC
- 2 Jet substructure: looking inside the jet
- Control of jet substructure: an analytical understanding
- 4 Conclusion and prospectives

#### Conclusion

- Good qualitative description of the shapes.
- **Efficiency** of the shapes:  $C_2 > \tau_{21} \gtrsim \mu^2$ .
- Next steps
  - Higher accuracy;
  - Add grooming;
  - Different jet shapes;
  - 3-pronged jet shapes;
  - Calculations for  $v \sim 1$ .



# Backup Slides

# Generalized $k_t$ algorithm

- Depends on a parameter p;
- Cluster partons by smallest distance  $d_{ij} = \min(z_i^{2p}, z_j^{2p})\theta_{ij}^2$ ;
- Particular cases:
  - p=0: C/A algorithm, angular ordered;
  - p=-1: anti- $k_t$  algorithm;
  - p=1/2: similar to mass measure.

## Non-perturbative effects





# More on Lund diagram



# Structure of the results (Signal)

- Decay of a boosted object into a pair  $q\bar{q}$  or gg.
- For a signal jet (fixed mass always) + a cut in the shape v:

