Pheno 2016 Forging new physics

May 9-11, 2016 University of Pittsburgh

Latest topics in **particle physics** and related issues in **astrophysics** and **cosmology**

Vector boson measurements @ATLAS

Chiara Debenedetti UCSC, SCIPP on behalf of the ATLAS collaboration

- Drell-Yan pairs transverse momentum and Φ^{*}_η precision measurement @ 8 TeV - arXiv: 1512.02192
- Measurement of angular coefficients in Z-boson events @ 8 TeV - still no arXiv record
- W,Z cross section and crosssection ratio measurement @ 13 TeV - arXiv:1603.09222

arXiv:1512.02192 - accepted by EPJC

Drell-Yan lepton pairs transverse momentum and ϕ_η^* precision measurement

L=20.3 fb⁻¹ Data collected by ATLAS @ 8 TeV in 2012

Testing different aspects of QCD:

- ➡ soft gluon resummation
- → fixed-order perturbative QCD predictions
- parton shower models

Study $d\sigma/dp_T^{\ell\ell}$ and $d\sigma/d\Phi^*_{\eta}$ in bins of $m_{\ell\ell}$ and $|y_{\ell\ell}|$

$$\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \cdot \sin(\theta_{\eta}^*) \quad \cos(\theta_{\eta}^*) = \tanh[(\eta^- - \eta^+)/2]$$

 Φ_{η}^{*} only direction dependent \rightarrow no resolution effects present at low $p_{T}^{\ell\ell}$

- Fiducial volume defined as:
 p_T^ℓ>20 GeV, |η_ℓ|<2.4
- MC signal: Powheg+Pythia
- Backgrounds: multi-jet datadriven and others from MC

combination @ Born level

Results: QCD predictions comparison

Known: RESBOS lacking NNLO QCD corrections for γ^* and Z/ γ^* interference

- Comparisons with RESBOS under Z m_{ll} peak and for integrated rapidity:
 - Low Φ_η and p_T⁻: dominated by soft-gluon-resummation effects →
 RESBOS predictions consistent with the data within theoretical uncertainties
 - → High Φ_{η} and p_{τ} ^T: sensitive to hard parton emissions → *RESBOS* differs from data
- Detailed comparisons with RESBOS in bins of rapidity and invariant mass for Φ_n:
 - → in Z peak region disagreement for $\Phi_n \gtrsim 2$
 - → low $m_{\ell\ell}$ disagreement for $\Phi_{\eta} \gtrsim 0.4$
 - good agreement in other regions
 - ratio of high m_{$\ell\ell$} to low m_{$\ell\ell$} shows disagreement above $\Phi_{\eta} \sim 0.5$

Good description of RESBOS in evolution of the $(1/\sigma)d\sigma/d\Phi_{\eta}^{*}$ measurement with $|y_{\ell\ell}|$

More plots in the backup slides!

Results: comparison to PS approach

- Same study performed for $(1/\sigma)d\sigma/d\Phi_{\eta}^{*}$ show similar behaviour for the different mass bins
- → PS MC's describe well (maximal discrepancies of 5%) the evolution of $(1/\sigma)d\sigma/dp_T^{\ell\ell}$ over $|y_{\ell\ell}|$

More plots in the backup slides!

Results: compare to fixed-order QCD

- Low p_T discrepancies expected
 because soft gluon emissions
 dominant
- Good shape description for p_T^T>30
 GeV, but normalisation
 systematically 15% lower than data
- Recent NNLO calculations (http:// moriond.in2p3.fr/QCD/2016/ TuesdayMorning/Huss.pdf) show
 improved agreement with data

Not sensitive to EW corrections (much smaller than data/DYNNLO discrepancy)

Not yet on arXiv - hot from the press!!!

Measurement of angular coefficients in Z-boson events

L=20.3 fb⁻¹ Data collected by ATLAS @ 8 TeV in 2012

Analysis motivation

- Measurement of production dynamics through a spin 1 Z via spin correlation between initial and final state partons
- Use Collins-Soper (CS) reference frame \rightarrow defines lepton θ and Φ

→ The fully differential DY cross section can be reorganised by factorising the dynamic of the boson production, and the kinematic of the decay → very precise measurement of A_i coefficients, that can be expressed as a function of θ and ϕ

$$\langle \frac{1}{2}(1-3\cos^2\theta) \rangle = \frac{3}{20}(A_0 - \frac{2}{3}); \quad \langle \sin 2\theta \cos \phi \rangle = \frac{1}{5}A_1; \quad \langle \sin^2\theta \cos 2\phi \rangle = \frac{1}{10}A_2; \\ \langle \sin \theta \cos \phi \rangle = \frac{1}{4}A_3; \quad \langle \cos \theta \rangle = \frac{1}{4}A_4; \quad \langle \sin^2\theta \sin 2\phi \rangle = \frac{1}{5}A_5; \\ \langle \sin 2\theta \sin \phi \rangle = \frac{1}{5}A_6; \quad \langle \sin \theta \sin \phi \rangle = \frac{1}{4}A_7.$$

- Lam-Tung relationship predicts A₀=A₂ up to NLO QCD (expect A₀>A₂ @ higher orders)
- $A_{5,6,7}$ expected to be 0 up to NLO QCD, and slightly divergent from zero @ high p_T for NNLO QCD

Analysis strategy

- Select three different lepton pair combinations:

- → 2 central electrons (e_{CC}), two central muons (μ_{CC}), one forward and one central electron (e_{CF})
- → Fiducial volume:
 - → p_{T_a} >25 GeV and $|\eta_{\ell}|$ <2.4 (central leptons)
 - → p_T >20 GeV, 2.5< $|\eta_e|$ <4.9 (forward electrons)
 - → 80<m_{$\ell\ell$}<100 GeV, measurement functions of p_T and also binned in y_z

- Signal MC: Powheg+Pythia
- Backgrounds estimated from MC, but multijet data-driven

Ζ

Analysis strategy

- Select three different lepton pair combinations:

- = 2 central electrons (e_{CC}), two central muons (μ_{CC}), one forward and one central electron (e_{CF})
- Fiducial volume:
 - → $p_{T_{a}}\!\!>\!\!25~GeV$ and $|\eta_{\ell}|\!<\!\!2.4$ (central leptons)
 - → p_{τ} >20 GeV, 2.5< $|\eta_{p}|$ <4.9 (forward electrons)
 - = $80 < m_{pp} < 100$ GeV, measurement functions of p_{τ} and also binned in y_7
- → Fold polynomials to reco phase space (t_{ii}) and fit them to reco data to the full phase space A_i's

$$N_{\exp}^{n}(A,\sigma,\theta) = \left\{ \sum_{j=1}^{23} \sigma_{j} \times L \times \left[t_{8,j}(\beta) + \sum_{i=0}^{7} A_{i,j} \times t_{i,j}(\beta) \right] + \sum_{B}^{bkgs} T_{B}(\beta) + T_{Fakes} \right\} \times \gamma$$

- Signal MC: Powheg+Pythia
- Backgrounds estimated from MC, but multijet data-driven

- In general comparison with Powheg+MINLO and DYNNLO (both O(α_s) for A_i vs p_T predictions) show good agreement with data
- → A_2 has slower rise in data in p_T than predictions
- → A₀-A₂, confirms Lam-Tung breaking @ higher orders than NLO → very sensitive probe of higher order QCD corrections!
 - For p_T > 50 GeV a factor of 2 higher than predictions (PDF cannot cover for this, probably due to higher order effects)
- $A_{5.6.7}$ all deviate from 0 @ high p_{T} , compatible with predictions within the errors but limited sensitivity

Ζ

arXiv:1603.09222 - submitted to Phys. Lett. B

W,Z cross sections and cross-section ratios

$L = 81 \text{ pb}^{-1} @ 13 \text{ TeV}$

Data taken with 50 ns bunch spacing in early Summer 2015

Motivation and strategy

 $\sigma_{W,Z}^{fid} \times BR(W, Z \to l\nu, ll) = \sigma_{W,Z}^{tot} \times BR(W, Z \to l\nu, ll) \cdot A_{W,Z} = \frac{N - B}{C_{W,Z} \cdot \mathcal{L}_{W,Z}}$

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections

➡ First tests of PDF's @ 13 TeV

- Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e**

Motivation and strategy

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections

- Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e**

$$\sigma_{W,Z}^{fid} \times BR(W, Z \to l\nu, ll) = \sigma_{W,Z}^{tot} \times BR(W, Z \to l\nu, ll) \cdot A_{W,Z} = \frac{N - B}{C_{W,Z} \cdot \mathcal{L}_{W,Z}}$$

geometric and phase space fiducial acceptance

Motivation and strategy

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections

- Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e** candidate signal events in data

 $\sigma_{W,Z}^{fid} \times BR(W, Z \to l\nu, ll) = \sigma_{W,Z}^{tot} \times BR(W, Z \to l\nu, ll) \cdot (A_{W,Z})$

geometric and phase space fiducial acceptance

 $C_{W,Z} \cdot \mathcal{L}_{W,Z}$

Motivation and strategy

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections

- Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e**

candidate signal events in data

geometric and phase space fiducial acceptance

estimated background events

Motivation and strategy

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections

- Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e**

Motivation and strategy

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections

- Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e**

Motivation and strategy

- Benchmark for understanding of EW and QCD processes
 - Precise predictions available @ NNLO QCD with NLO EW corrections (DYNNLO+FEWZ +SANC)
- High precision in the measurement reachable because of leptonic final states, and large production cross sections
- → First tests of PDF's @ 13 TeV
 - Cancellation of experimental uncertainties in the ratios providing constraints on the PDF's
- Calculate total and fiducial cross sections, and fiducial-cross-section ratios

Fiducial phase space: **{=µ,e**

- Top-quark and EW backgrounds
 - estimated from simulation
 - dominant contributions:
 - → W analysis: Z→ $\mu\mu$ 5%, W→ $\tau\nu$ 2%, Z→ee, ttbar 1%
 - → Z analysis: ttbar 0.5%, EW background 0.2%

- QCD multijet background \rightarrow data driven

- In Z channel negligible (<0.1%)</p>
- → in W channel evaluated wth repeated template fit approach in slices of isolation, and extrapolated to the signal region: ~10% in electron channel and ~4% in muon channel

Combination and xsec measurement

Combination of the different channels

- Use HERAverager and account for correlations in the systematics and for MJ use: $\delta(W^{\pm})^2 = \delta(W^{\pm})^2 + \delta(W^{\pm})^2 + 2\rho\delta(W^{\pm})\delta(W^{\pm})$

	Predicted cross section × BR($W \rightarrow \ell \nu, Z \rightarrow \ell \ell$) [nb] (value ± PDF ± scale ± other)		Measured cross section \times BR($W \rightarrow \ell \nu, Z \rightarrow \ell \ell$) [nb] (value \pm stat \pm syst \pm lumi)		
Channel	Fiducial	Total	Fiducial	Total	
<i>W</i> ⁻	$3.40^{+0.09}_{-0.11} \pm 0.04 \pm 0.06$	$8.54^{+0.21}_{-0.24}\pm0.11\pm0.12$	$3.48 \pm 0.01 \pm 0.07 \pm 0.17$	$8.75 \pm 0.02 \pm 0.24 \pm 0.44$	
W^+	$4.42^{+0.13}_{-0.14}\pm0.05\pm0.08$	$11.54^{+0.32}_{-0.31}\pm0.15\pm0.16$	$4.51 \pm 0.01 \pm 0.09 \pm 0.23$	$11.78 \pm 0.02 \pm 0.32 \pm 0.59$	
W^{\pm}	$7.82^{+0.21}_{-0.25}\pm0.09\pm0.13$	$20.08^{+0.53}_{-0.54}\pm0.26\pm0.28$	$7.99 \pm 0.01 \pm 0.16 \pm 0.40$	$20.55 \pm 0.03 \pm 0.55 \pm 1.03$	
Ζ	$0.74^{+0.02}_{-0.03}\pm0.01\pm0.01$	$1.89 \pm 0.05 \pm 0.03 \pm 0.03$	$0.775 \pm 0.003 \pm 0.006 \pm 0.039$	$1.97 \pm 0.01 \pm 0.04 \pm 0.10$	
	Predicted ratio (value ± PDF)		Measured ratio (value ± stat ± syst)		
W^+/W^-	1.30 ± 0.01	-	$1.295 \pm 0.003 \pm 0.010$	-	
W^{\pm}/Z	10.54 ± 0.12	-	$10.31 \pm 0.04 \pm 0.20$	_	

with predictions!

G

ood

agreement

Combination and xsec measurement

Combination of the different channels

→ Use HERAverager and account for correlations in the systematics and for MJ use: $\delta(W^{\pm})^2 = \delta(W^{\pm})^2 + \delta(W^{\pm})^2 + 2\rho\delta(W^{\pm})\delta(W^{\pm})$

	Predicted cross section × BR($W \rightarrow \ell \nu, Z \rightarrow \ell \ell$) [nb] (value ± PDF ± scale ± other)		Measured cross section \times BR($W \rightarrow \ell \nu, Z \rightarrow \ell \ell$) [nb] (value \pm stat \pm syst \pm lumi)		
Channel	Fiducial	Total	Fiducial	Total	
<i>W</i> -	$3.40^{+0.09}_{-0.11}\pm0.04\pm0.06$	$8.54^{+0.21}_{-0.24}\pm0.11\pm0.12$	$3.48 \pm 0.01 \pm 0.07 \pm 0.17$	$8.75 \pm 0.02 \pm 0.24 \pm 0.44$	
W^+	$4.42^{+0.13}_{-0.14}\pm0.05\pm0.08$	$11.54^{+0.32}_{-0.31}\pm0.15\pm0.16$	$4.51 \pm 0.01 \pm 0.09 \pm 0.23$	$11.78 \pm 0.02 \pm 0.32 \pm 0.59$	
W±	$7.82^{+0.21}_{-0.25}\pm0.09\pm0.13$	$20.08^{+0.53}_{-0.54} \pm 0.26 \pm 0.28$	$7.99 \pm 0.01 \pm 0.16 \pm 0.40$	$20.55 \pm 0.03 \pm 0.55 \pm 1.03$	
Ζ	$0.74^{+0.02}_{-0.03}\pm0.01\pm0.01$	$1.89 \pm 0.05 \pm 0.03 \pm 0.03$	$0.775 \pm 0.003 \pm 0.006 \pm 0.039$	$1.97 \pm 0.01 \pm 0.04 \pm 0.10$	
	Predicted ratio (value ± PDF)		Measured ratio (value ± stat ± syst)		
W^+/W^-	1.30 ± 0.01	-	$1.295 \pm 0.003 \pm 0.010$	-	
W^{\pm}/Z	10.54 ± 0.12	-	$10.31 \pm 0.04 \pm 0.20$	-	

with predictions:

G

00

Q

agreeme

nt

Cross-section ratios

- (partial) cancellation of some uncertainties (lumi, lepton ID and trigger systematics)
 - improved discriminating power between different pdf predictions
- Sensitivity to different aspects:
 - $\rightarrow W_{+}^{'}/W$ to $u_{v}-d_{v}$ at low x
 - $W^/Z$ to strange quark distribution
- W[']/W more discriminant power, *favours CT14nnlo and MMHT14nnlo PDFs*
- W/Z compatible with all PDFs within uncertainties

C. Debenedetti - UCSC/SCIPP - PHENO2016 - Vector boson measurement @ ATLAS

- → Drell-Yan pairs transverse momentum and Φ_{η} precision measurement @ 8 TeV arXiv:1512.02192
 - Good agreement with RESBOS until high p_T^{ℓ} or Φ_n^* , where divergences start
 - Powheg+Pythia with AZNLO tune provides best description of p_T in Z mass peak region
 - Fixed order NNLO QCD predictions systematically show 15% difference in normalisation to data, and no sensitivity to EW correction is observed
- Measurement of angular coefficients in Z-boson events @ 8 TeV coming soon on arXiv!
 - Good agreement between data and $O(\alpha_s)$ predictions
 - → A₀-A₂ sensitive to higher order corrections (confirmed Lam-Tung breaking @ NLO)
 - $\rightarrow A_{5.6.7}$ different from 0 @ high p_T^2 and consistent with predictions
- → W,Z cross section and cross-section ratio measurement @ 13 TeV arXiv:1603.09222
 - Fiducial and total cross sections in agreement within uncertainties with predictions, and different PDF choices
 - Cross-section ratio W /W favours CT14nnlo and MMHT14nnlo PDF's
 - Cross-section ratio W⁻/Z compatible with all PDF choices

C. Debenedetti - UCSC/SCIPP - PHENO2016 - Vector boson measurement @ ATLAS

16/16

- Drell-Yan pairs transverse momentum and Φ_n precision measurement @ 8 TeV arXiv:1512.02192
 - Good agreement with RESBOS until high p_T or Φ_n , where diverge
 - Powheg+Pythia with AZNLO tune provides best description
 - listenin Fixed order NNLO QCD predictions systematically normalisation to data, and no sensitivity to EW correction is observed

Measurement of angular coefficient arXiv!

- , predictions Good agreement
- ➡ A₀-A₂ sensi Interview of the second sec

 $ngh p_{\tau}^{-}$ and consistent with predictions

- → W,Z cr Aon and cross-section ratio measurement @ 13 TeV - arXiv:1603.09222
 - Fiducial and total cross sections in agreement within uncertainties with predictions, and different **PDF** choices
 - → Cross-section ratio W /W favours CT14nnlo and MMHT14nnlo PDF's
 - → Cross-section ratio W /Z compatible with all PDF choices

C. Debenedetti - UCSC/SCIPP - PHENO2016 - Vector boson measurement @ ATLAS

region

vents @ 8 TeV - coming soon on

arXiv:1512.02192 - accepted by EPJC

Drell-Yan lepton pairs transverse momentum and ϕ_η^* precision measurement

L=20.3 fb⁻¹ collected by ATLAS @ 8 TeV

Background composition

- Under the Z peak dominated by $\gamma\gamma$ $\ell\ell$ and multijet ~1%
- → Low m_{ℓℓ}
 - → high $p_T^{\ell\ell}$ and Φ_{η}^* dominated by tt and VV ~20%
 - Iow p_T^{ℓℓ} dominated by Z→TT and multijet ~20%
- → High m_{ℓℓ}
 - high $p_T^{\ell\ell}$ and Φ_{η}^* dominated by tt ~30%
 - → low $p_T^{\ell\ell}$ dominated by $\gamma\gamma \rightarrow \ell\ell \sim 20\%$

Data statistical uncertainty is dominant

Lumi uncertainty 2.8%

Data vs RESBOS (i)

Data vs RESBOS (ii)

Data vs RESBOS (iii)

Results: comparison to PS approach

Data vs PS MC's for phixeta

NNLO predictions comparison

- New NNLO available predictions (<u>http://moriond.in2p3.fr/QCD/2016/</u> <u>TuesdayMorning/Huss.pdf</u>) show *improved agreement with the data*
 - → Up to 5-10%

Not yet on arXiv - hot from the press!!!

Measurement of angular coefficients in Z-boson events

L=20.3 fb⁻¹ collected by ATLAS @ 8 TeV in 2012

Analysis motivation

$$\langle \frac{1}{2}(1-3\cos^2\theta) \rangle = \frac{3}{20}(A_0 - \frac{2}{3}); \quad \langle \sin 2\theta \cos \phi \rangle = \frac{1}{5}A_1; \quad \langle \sin^2\theta \cos 2\phi \rangle = \frac{1}{10}A_2; \\ \langle \sin \theta \cos \phi \rangle = \frac{1}{4}A_3; \quad \langle \cos \theta \rangle = \frac{1}{4}A_4; \quad \langle \sin^2\theta \sin 2\phi \rangle = \frac{1}{5}A_5; \\ \langle \sin 2\theta \sin \phi \rangle = \frac{1}{5}A_6; \quad \langle \sin \theta \sin \phi \rangle = \frac{1}{4}A_7.$$

- → A₀ and A₂: fractions of transverse and longitudinal polarisations
 - Lam-Tung relationship predicts A₀=A₂ up to NLO QCD (expect A₀>A₂ @ higher orders)
- ► A1: interference between transverse and longitudinal polarisation
- → A_3 and A_4 : product of vector-axial couplings, sensitive to sin² θ_W
 - → A₄ only one present @ LO QCD
- A_{5,6,7} expected to be 0 up to NLO QCD, and slightly divergent from zero @ high p_T for
 ▲ NNLO QCD

Analysis strategy

- → Lepton selections sculpt A_i distributions
 → fold polynomials to reco phase space, modelling acceptance, efficiencies and migration effects with MC → t_{ii}
- → Build also background templates T_B
- Fit folded templates to reco data to the full phase space A_i's

$$N_{\exp}^{n}(A,\sigma,\theta) = \left\{\sum_{j=1}^{23} \sigma_{j} \times L \times \left[t_{8,j}(\beta) + \sum_{i=0}^{7} A_{i,j} \times t_{i,j}(\beta)\right] + \sum_{B}^{bkgs} T_{B}(\beta) + T_{Fakes}\right\} \times \gamma^{n}$$

Perform maximum likelihood fit on the reco data to extract the A_i's:

$$\mathcal{L}(A_{i,j},\sigma_j^{\Phi} \mid N) = \prod_{n}^{Nbins} \left\{ P(N_{obs}^n) \mid N_{exp}^n(A,\sigma,\theta) P(N_{eff}^n \mid \gamma^n N_{obs}^n) \right\} \times \prod_{m}^{M} G(0 \mid \beta^m, 1)$$

ATLAS Simulation

Preliminary

 ee_{CC} : y^z-integrated

 $\sqrt{s} = 8 \text{ TeV}, p_{T}^{Z} = 5-8 \text{ GeV}$

ATLAS Simulation

Preliminary

 ee_{CC} : y^Z-integrated

 $\sqrt{s} = 8 \text{ TeV}, p_{T}^{Z} = 22-25.5 \text{ GeV}$

 $\cos\theta_{\text{CS}}$

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ee_{cc}: y^z-integrated

 $\sqrt{s} = 8 \text{ TeV}, p_{T}^{Z} = 132-173 \text{ GeV}$

0.04

0.02

-0.02

-0.04

-0.06

emplated $P_n(\cos \theta_{CS},$

ATLAS Simulation

 θ_{cs} ,

₽,

0.04

0.03

0.02

0.035

0.03 %

0.02 E 0.015 0.011 U 0.005 L 0.005 L

0.005

 $\cos\theta_{\text{CS}}$

Preliminary

Background fractions

Systematic uncertainties

arXiv:1603.09222 - submitted to Phys. Lett. B

W,Z cross sections and cross-section ratios

L = 81 pb⁻¹ @ 13 TeV

Data taken with 50 ns bunch spacing in early Summer 2015

Event selection - or "how to get N and B"

Event selection:

Primary vertex: hard scatter vertex with at least 2 tracks associated Trigger (e): isolated electron with $p_T>24$ GeV OR electron with $p_T>60$ GeV Trigger (µ): isolated muon with $p_T>20$ GeV OR muon with $p_T>50$ GeV

Good electron:

Pass likelihood medium ID Isolation: 90% efficient track-calo combined working point p_T>25 GeV, |**n**|<2.47, excluding calorimeter crack region (1.37<|**n**|<1.52)

Good muon:

Pass medium ID Isolation: 90% efficient track-calo combined working point p_T>25 GeV, |**η**|<2.4

W selection:

Only one good electron or muon Calibrated missing energy > 25 GeV m_T^W>50 GeV

Z selection:

Exactly two good electron or muon 66 GeV < m_{ll} < 116 GeV

NB: uniform cuts across the channels (important for uncertainty reduction in ratio)

Multijet background extraction in W analysis

QCD multijet background:

→ in Z analysis negligible (<0.1%), in W analysis sizeable contribution, estimated using data

Multijet background extraction in W analysis

QCD multijet background:

→ in Z analysis negligible (<0.1%), in W analysis sizeable contribution, estimated using data

Use repeated template fit approach

- slice in intervals of isolation, to obtain statistically independent templates
 - Evaluation performed in 2 Fit Regions (m_T relaxed, E_T^{miss} relaxed), for different kinematic distributions (E_T^{miss}, m_T, p_T^ℓ, dΦ(E_T^{miss}, ℓ)) → extract yields
 - Different extracted yields
 extrapolated to signal region
 (small isolation values)

Multijet background extraction in W analysis

QCD multijet background:

→ in Z analysis negligible (<0.1%), in W analysis sizeable contribution, estimated using data

Use repeated template fit approach

- slice in intervals of isolation, to obtain statistically independent templates
 - Evaluation performed in 2 Fit Regions (m_T relaxed, E_T^{miss} relaxed), for different kinematic distributions (E_T^{miss}, m_T, p_T^ℓ, dΦ(E_T^{miss}, ℓ)) → extract yields
 - Different extracted yields
 extrapolated to signal region
 (small isolation values)

Kinematic distributions

- No differential cross section evaluated:
 - plots only illustrative of the data/MC agreement
- Signal modelled with Powheg+Pythia8, MJ shape and yield from data-driven estimate, other backgrounds from simulation (Powheg+Pythia - check ttbar)
- Systematic band shows experimental uncertainties, but does not include 5% luminosity uncertainty

Systematic uncertainties

<i>δC/C</i> [%]	$Z \rightarrow e^+ e^-$	$W^+ \rightarrow e^+ v$	$W^- \to e^- \overline{\nu}$	$Z \rightarrow \mu^+ \mu^-$	$W^+ \rightarrow \mu^+ \nu$	$W^- \to \mu^- \overline{\nu}$
Lepton trigger	0.1	0.3	0.3	0.2	0.6	0.6
Lepton reconstruction, identification	0.9	0.5	0.6	0.9	0.4	0.4
Lepton isolation	0.3	0.1	0.1	0.5	0.3	0.3
Lepton scale and resolution	0.2	0.4	0.4	0.1	0.1	0.1
Charge identification	0.1	0.1	0.1	—	_	—
JES and JER	-	1.7	1.7	—	1.6	1.7
E ^{miss}	_	0.1	0.1	_	0.1	0.1
Pile-up modelling	< 0.1	0.4	0.3	< 0.1	0.2	0.2
PDF	0.1	0.1	0.1	< 0.1	0.1	0.1
Total	1.0	1.9	1.9	1.1	1.8	1.8

- Contribute to the cross-section measurement via the C factor mainly
- → Lumi uncertainty 5%

Putting everything together.

	W^+	W^-	Z		
	Electron channel (value ± stat ± syst ± lumi)				
Signal events	$228060 \pm 510 \pm 4920 \pm 480$	$177890 \pm 450 \pm 6110 \pm 430$	$34865 \pm 187 \pm 10 \pm 7$		
Correction C	0.602 ± 0.012	0.614 ± 0.012	$0.552 \substack{+0.006 \\ -0.005}$		
$\sigma^{\rm fid}[m nb]$	$4.66 \pm 0.01 \pm 0.13 \pm 0.24$	$3.57 \pm 0.01 \pm 0.14 \pm 0.19$	$0.777 \pm 0.004 \pm 0.008 \pm 0.039$		
Acceptance A	0.383 ± 0.007	0.398 ± 0.007	0.393 ± 0.007		
$\sigma^{\rm tot}[{\rm nb}]$	$12.18 \pm 0.03 \pm 0.41 \pm 0.63$	$8.96 \pm 0.02 \pm 0.38 \pm 0.47$	$1.98 \pm 0.01 \pm 0.04 \pm 0.10$		
	Muon channel (value \pm stat \pm syst \pm lumi)				
Signal events	$237721.3 \pm 516 \pm 2209.6 \pm 970$	$183182.5 \pm 457 \pm 2520.1 \pm 870$	$44706 \pm 212 \pm 13 \pm 10$		
Correction C	0.653 ± 0.012	0.650 ± 0.012	0.711±0.008		
$\sigma^{ m fid}[m nb]$	$4.48 \pm 0.01 \pm 0.09 \pm 0.24$	$3.47 \pm 0.01 \pm 0.08 \pm 0.19$	$0.774 \pm 0.004 \pm 0.008 \pm 0.039$		
Acceptance A	0.383 ± 0.007	0.398 ± 0.007	0.393 ± 0.007		
$\sigma^{\rm tot}[\rm nb]$	$11.70 \pm 0.02 \pm 0.32 \pm 0.63$	$8.71 \pm 0.02 \pm 0.25 \pm 0.48$	$1.97 \pm 0.01 \pm 0.04 \pm 0.10$		

- A factors obtained at Born level with DYNNLO
 - dominant uncertainty from different PDF sets (CT14nnlo, NNPDF3.0, MMHT14nnlo68CL, ABM12)

 Measurement in electron channel higher for W, but larger uncertainties, and within 1σ

 Check of lepton universality: good agreement with SM expectations and previous precision measurements

Cross-section dependence on sqrt(s)

Consistent with NNLO QCD

Ztjels cross section

$L = 81 \text{ pb}^{-1} @ 13 \text{ TeV}$

Data taken with 50 ns bunch spacing in early Summer 2015

- Helps to understand QCD effects in high-multiplicity final states
- → Z+jets important background to several searches, Higgs boson and top quark production
- → Same fiducial phase space as Z inclusive analysis for leptons, with extra jets requirement of p_T >30 GeV and |y|<2.5
 - → Look at events with up to 4 jets in the final state

- Helps to understand QCD effects in high-multiplicity final states
- → Z+jets important background to several searches, Higgs boson and top quark production
- → Same fiducial phase space as Z inclusive analysis for leptons, with extra jets requirement of p_T >30 GeV and |y|<2.5
 - Look at events with up to 4 jets in the final state

- Bin-by-bin extraction of fiducial cross sections at particle level (see inclusive analysis)
 - Combination of lepton channels using HERAverager
- → Comparison to Sherpa (NLO) and Madgraph (LO) → **good agreement** also in ratio
- Reach precision of 10-20% up to 4 jets

Results: Lepton breakdown

