Searches for high-mass (experimantally) non-resonant signals at CMS

Heavy Gauge Boson W', Type III Seesaw Heavy Fermions, **Black Holes**

May 8th 2016

Tobias Pook on behalf of the CMS Collaboration

und Forschun

Heavy Gauge Bosons W'

Model Assumptions:

- W' serves as classic benchmark model for new heavy gauge bosons
- Sequential Standard Model (SSM) with same coupling as SM (generic)
- Models in this talk suppress coupling to gauge bosons.

Results CMS ATLAS W': $(e + \mu) + \not\!\!E_T$ $W': \mu + E_T$ $W': \tau + E_T$ $W': e + E_T$ 0 Mass limit [TeV]

Heavy Gauge Bosons W'

Search Strategy:

- ► Select events with one well reconstructed high-*p*_T lepton
- ► Consider two-body decay kinematic for heavy W':
 - Balanced:

Back-to-back:

Black Holes

• e/μ : $|\Delta \phi (p_T', \vec{p}_T^{miss})| < 2.5$ • τ : $|\Delta \phi (p_T', \vec{p}_T^{miss})| < 2.4$

3

Heavy Gauge Bosons W': e/μ channels

- Dominating uncertainty: PDFs (~ 9% at 2 TeV)
- Event with highest mass: M_T = 2.0 TeV

- Dominating uncertainty: muon p_T scale (~ 21% at 2 TeV)
- Event with highest mass:
 M_T = 1.3 TeV

Heavy Gauge Bosons W': e/μ channels

Combined W' mass limit: 4.4 TeV

Black Holes

Heavy Gauge Bosons W': τ (had) channel

- *p*^τ_T > 80 GeV, |η| < 2.1</p>
- Dominating uncertainty: tau p_T scale (20% on yield for M_T > 1 TeV)
- Event with highest mass: $M_T = 1.0 \text{ TeV}$

5

Heavy Gauge Bosons

Type III Seesaw Heavy Fermions

Theory

- Neutrinos are majorana particles
- Type III Seesaw mechanism explains masses with coupling to heavy SU(2) triplet:
 - Two charged dirac leptons Σ^{\pm}
 - One neutral majorana lepton Σ⁰
- Flavor democratic mixing angles: $V = 10^{-6} \text{ gm}^{0.6}$

Search Strategy

- Search for pair production of Σ^{\pm}, Σ^{0}
- Search in sum of lepton p_T : L_T
- Split 3 lepton final states by opposite-sign same flavor (OSSF) mass: low mass, on-Z, high mass
- New in 13 TeV: 4 lepton final states with at least one OSSF

Heavy Gauge Bosons

Type III Seesaw Heavy Fermions

Uncertainties

- Most channels are hardly influenced by systematics due to small statistics
- Background yield uncertainties:
 - Normalization in data driven estimates: 5% – 40%
- Influence from PDF, renormalization / factorization scales on signal covered by 10% uncertainty

Black Holes

Type III Seesaw Heavy Fermions

Mass limit: $M_{\Sigma} > 440 \,\text{GeV}$

Black Holes

Theory:

- Arkani-Hamed Dvali Dimopulos (ADD) model
- *n_{ED}* additional compactified dimensions
- Fundamental Planck scale M_D lowered to TeV region
- Black hole (BH) models with ADD as base theory
- ► Production cross section ≈ area of disk with Schwarzschild radius
- $\blacktriangleright\,$ BH production above threshold ${\rm M}_{\it BH}^{\it min} \geq {\rm M}_{\it D}$

BH Decays

- Semiclassical M^{min}_{BH} ≫ M_D: BH evaporates via Hawking radiation → multi particle final states with particle type distribution according to degrees of freedom
- ► Quantum Black Holes M^{min}_{BH} ≈ M_D: Decay into few objects before thermalization (e.g. eµ)

Black Holes

Images ©Sabine Hossenfelder

Black Holes

Analysis Strategy:

- Define final states only by particle multiplicity
- ► Search variable $S_{T} = \left(\sum_{i=1}^{N} E_{T,i}\right) + (\not\!\!E_{T} > 50 \text{ GeV})$

Data Driven Background Estimation:

- Empirical observation: Shape of S_T distribution does not depend on multiplicity for multijet events above turn-on threshold.
- Normalize multijet background to dijet spectrum at small S_T
 - \rightarrow negligible signal expectation

S_T [GeV]

Black Holes

CMS Preliminary

EXO-15-007

10

Entries / 100 GeV 1 010

10

10

√s = 13 TeV, Ldt = 2.2 fb

N = 2, Object E_ > 50 GeV

V+iets

Black Holes

Systematic Uncertainties:

- Several uncertainties contribute with O(5%)
- Uncertainty from background fit (up to 200%) dominates in most regions

Black Holes: Benchmark Results

 Semiclassical (ADD n=6, M_D = 4 TeV) M^{min}_{BH} < 8.7 TeV ► QBH (ADD n=6) M^{min}_{BH} < 8 TeV</p>

Model unspecific limits in PAS

Heavy Gauge Bosons

Black Holes

12

Conclusion

- Searches for non-resonant signatures found no evidence for new physics
- ► Limits for W', ADD and Black Hole models extended with new 13 TeV data
- Expect more results and additional interpretations soon

Backup

Tobias Pook pook@physik.rwth-aachen.de

sponsored by

W': e/μ Object Selection

Global

- Objects reconstructed with particle-flow technique
- Vetos for calorimeter noise, beam halos, jets near dead channels

Electrons

- Offline p_T > 130 GeV
- Isolation in tracker and calorimeters
- Ratio of Ecal & Hcal isolation
- Electronmagnetic shower shape
- One hit in innermost track layer
- Veto events with additional electrons with *E_T* > 35 GeV

Muon

- Dedicated high-p_T reconstruction
- Hits in pixel & strip tracker
- Hits in at least 2 muon system segments
- Primary vertex:
 - Transverse impact parameter $|d_{xy}| < 0.02 cm$
 - Longitudinal distance
 |d_z| < 0.5cm
- isolated in tracker
- ▶ fit quality σ_{pT} / pT < 0.3</p>
- Veto event with additional muons with p_T > 25 GeV

Black Holes

15

Heavy Gauge Bosons W': τ channel

Tau Selection:

- *p*^τ_T > 50 GeV, |η| < 2.1</p>
- "Hadron plus strips" algorithm based on decay modes via specific intermediate resonances
- Isolation: No additional charged hadrons / photons objects near τ candidate
- Total reconstruction efficiency 80% flat above p_T^τ > 500 GeV

Black Holes

Heavy Gauge Bosons W': τ channel

Model unspecific limits:

- W' limit influenced by assumptions about signal shape
- ► Consider only total background yield above M_T threshold
- ► Limit valid for W'-like models → comparable signal efficiency in acceptance

Model unspecific limit will be added for e/μ in journal publication

Black Hole Model unspecific Limit

Heavy Gauge Bosons

Black Holes

17