Soft Wall Light Dilatons
At Finite Temperature

Don Bunk (Hamilton College)
Phenomenology 2016 Symposium

Work in progress with Jay Hubisz (Syracuse)
and Bithika Jain (KIAS)
Conformal Symmetry Breaking

Most general Dilaton Lagrangian invariant under dilatations:

\[\mathcal{L}_{\text{eff}} = F \chi^4 + \frac{1}{2} (\partial_\mu \chi)^2 + \text{higher derivatives} \]

Obstruction to SBSI:
- \(F > 0 \) \(\Rightarrow \) \(\chi = 0 \) (no breaking)
- \(F < 0 \) \(\Rightarrow \) \(\chi = \infty \) (runaway)
- \(F = 0 \) \(\Rightarrow \) \(\chi = \text{anything} \) (flat direction)

Need explicit breaking...
A Holographic Model

\[ds^2 = e^{-2ky} \eta_{\mu\nu} dx^\mu dx^\nu - dy^2 \]

\[k = \kappa \sqrt{-\frac{\Lambda_{(5)}}{6}} \]

\(\mu \) Explicit breaking

\(\mu \) Spontaneous breaking

\(\mu \) Dilaton

UV brane

IR brane

Radion

AdS

CFT
A Holographic Model

Stabilizing inter-brane distance typically requires tuning Λ_{IR} against $\Lambda_{(5)}$:

$$F \sim \Lambda_{IR} - \Lambda_{(5)}/k$$

Meanwhile, in the CFT:

Conformal Symmetry Breaking

Another possibility: \(V_{\text{eff}} = \chi^4 F(\lambda(\chi)) \)

- If quartic is mildly energy dependent, coupling can be large, but if \(\beta(\lambda) \) is small, it will slowly scan values of \(F \) and for sufficiently long running find min at \(F \sim 0 \).

\[
\frac{d\lambda}{d \log \mu} = \beta(\mu) = \epsilon b(\mu) \ll 1 \quad \text{With } \epsilon \ll 1 \quad b(\mu) = \mathcal{O}(1)
\]

- Small dilaton mass and CC for large coupling:

\[
m_{\text{dil}}^2 \sim \beta f^2 \quad \Delta \Lambda_{\text{eff}} \sim \beta f^4
\]

Meanwhile, in AdS:

Tuning on the IR brane has been relaxed.
A Near Marginal Deformation

\[\frac{d\lambda}{d \log \mu} = \beta(\mu) = \epsilon b(\mu) \ll 1 \]

\[V_{\text{eff}} \approx \mu^{\frac{\epsilon}{4}} \chi^{4-\epsilon} + \lambda \chi^4 \]

\[S = \int d^5 x \sqrt{g} \left[\frac{1}{2} (\partial_M \phi)^2 + \Lambda_{(5D)} \left(+1 + \frac{\epsilon}{3} \phi^2 \right) - \frac{1}{2\kappa^2} R \right] \]
A Near Marginal Deformation

- Goal: Probe the soft-wall in which there is a longer running region in CFT and smaller breaking scale (IR brane plays lesser role).

- A delicate balancing act:

\[V_{\text{eff}} \approx \mu^\epsilon \chi^{4-\epsilon} + \lambda \chi^4 \]

\[\chi_{\text{min}} \sim \frac{\mu}{\lambda^{\frac{1}{\epsilon}}} \]

\[m_{\text{dil}} \sim \chi_{\text{min}}^2 \]

\[V_{\text{min}} \sim \chi_{\text{min}}^4 \]

Extremely sensitive!

Light Dilaton and small CC contribution, but sensitive!
New Setup

\[S = \int d^5 x \sqrt{g} \left[\frac{1}{2} (\partial_M \phi)^2 - V(\phi) - \frac{1}{2\kappa^2} R \right] \quad \kappa^{-2} \equiv 2M_*^3 \]

\[ds^2 = e^{-2A(y)} \eta_{\mu\nu} dx^\mu dx^\nu - dy^2 \]

Switch to coordinates: \[ds^2 = e^{-2A} \eta_{\mu\nu} dx^\mu dx^\nu - \frac{dA^2}{G(A)} \]

\[G(A) \sim \frac{1}{1 - \frac{\kappa^2}{12} \dot{\phi}^2} \quad \text{Parameterizes back-reaction.} \]

A drops out of EOM!

\[\ddot{\phi} = 4 \left(\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V(\phi)}{\partial \phi} \right) \left(1 - \frac{\kappa^2}{12} \dot{\phi}^2 \right) \]
A Near Marginal Deformation

\[\ddot{\phi} = 4 \left(\phi - \frac{1}{\kappa^2} \frac{\epsilon \phi}{1 + \kappa^2 \frac{\epsilon}{3} \phi^2} \right) \left(1 - \frac{\kappa^2}{12} \dot{\phi}^2 \right) \]

\[\kappa = 1 \]
\[\phi_{UV} = 1 \]
\[\epsilon = 1/10 \]

Large backreaction!
Calculating...

A good picture of ϕ insufficient for V_{eff}.

Analytically:
- Deviation from unstable trajectory give minimum:

$$\dot{\phi} \approx \frac{3}{2\kappa^2} \frac{\partial \log V(\phi)}{\partial \phi} + \delta\phi_{UV}$$

Numerically:
- Initial trajectory unstable: $\delta\phi_{UV} \sim e^{4A}$

Naive ϵ expansion insufficient:
Effective Potential

\[V_{eff} = \kappa \phi_{IR} \phi_{UV} \epsilon \left(\frac{\Lambda_{IR}}{\Lambda_{(5)}} \right) / k \]

\[\kappa = 1 \]
\[\phi_{IR} = 10 \]
\[\phi_{UV} = 1 \]
\[\epsilon = 1/10 \]
\[\frac{\Lambda_{IR}}{\Lambda_{(5)}} / k = 117 \]
Finite Temperature

Conformal Symmetry \hspace{1cm} \text{Phase transition} \hspace{1cm} \text{Conformal Symmetry}

High temperature conformal phase is dual to a black brane:

Hawking, Page '83
E. Witten, [arXiv:hep-th/9802150]
Finite Temperature

Ansatz for AdS-Schwarzschild:

\[ds^2 = e^{-2A} [h(A) dt^2 + dx^2] + \frac{1}{h(A)} \frac{dA^2}{G(A)} \]

\[\ddot{h} = 4 \dot{h} \left(1 - \frac{1}{12} \dot{\phi}^2 \right) \]

\[\ddot{\phi} = 4 \left(\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V}{\partial \phi} \right) \left(1 - \frac{1}{4} \frac{\dot{h}}{h} - \frac{\kappa^2}{12} \phi^2 \right) \]
Finite Temperature

Horizon criteria: $h \to 0$ in

$$\ddot{\phi} = 4 \left(\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V}{\partial \phi} \right) \left(1 - \frac{1}{4} \frac{\dot{h}}{h} - \frac{\kappa^2}{12} \dot{\phi}^2 \right)$$

$$\dot{\phi} - \frac{3}{2\kappa^2} \frac{\partial \log V}{\partial \phi} \approx 0$$

$$\dot{\phi} \sim \epsilon \ll 1 \quad \text{Throughout}$$

$$h \approx 1 - e^{4(A-A_h)} + O(\epsilon^2)$$

Finite Temp is well approximated by AdS-S with ϕ on unstable trajectory.
Finite Temperature

\[V_{eff} = k e^{-A h} \]

Analytical

Numerical

\[\kappa = 1 \]
\[h_{UV} = 1 \]
\[\phi_{UV} = 1 \]
\[\epsilon = 1/10 \]
\[\frac{\Lambda_{IR}}{\Lambda(5) / k} = 117 \]
\[T = 1.4 \cdot 10^{-6} \]
Conclusions

• Understanding backreaction is important, and have to be careful in order to get effective potential correct.

• With pieces falling into place, to do list:
 • Dilaton normalization.
 • Calculate transition temperature for phase transition.
 • Multiple fields more realistic and appropriate for cosmology:

\[
\ddot{\phi}_i = 4 \left(\dot{\phi}_i - \frac{3}{2\kappa^2} \frac{\partial \log V}{\partial \phi_i} \right) \left(1 - \frac{\kappa^2}{12} \sum_i \phi_i^2 \right)
\]

• Are results distinct from Creminelli,Nicolis,Rattazzi (hep-th/0107141)?
Effective potential

\[V_{\text{eff}} = e^{-4y_0} \left[V_0(\phi(y_0)) - \frac{6}{\kappa^2} \sqrt{G(y_0)} \right] + e^{-4y_1} \left[V_1(\phi(y_1)) + \frac{6}{\kappa^2} \sqrt{G(y_1)} \right] \]

UV contribution:

IR contribution:

\[\mu_0 = k e^{-y_0} \]
\[\mu_1 = k e^{-y_1} \]
\[\chi = k e^{-y_c} \]

\[V_{\text{eff}} \approx \mu \epsilon \chi^{4-\epsilon} + \lambda \chi^4 \]
Effective Potential

Preliminary results
A Holographic Model

A mildly running quartic balances large initial value:

\[V_{\text{eff}} = 0 \]

\[\beta \neq 0 \]
Finite Temperature

\[T = 50 \]

\[T = 40 \]

\[T = 30 \]

\[T = 20 \]

\[T = 10 \]

Jay's Numerical
Zeroth Order Analytical
First Order Analytical
A Near Marginal Deformation

\[
\ddot{\phi} = 4 \left(\dot{\phi} - \frac{1}{\kappa^2} \frac{\epsilon \phi}{1 + \kappa^2 \frac{\epsilon}{3} \phi^2} \right) \left(1 - \frac{\kappa^2}{12} \dot{\phi}^2 \right)
\]