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Current	status	of	Higgs	Boson	

Higgs	boson	proper8es		
(ATLAS	&	CMS	combined)	
	
Ø  Higgs	mass			
	
	
	
	
	
Ø  Higgs	couplings			
	
					Consistent	with	the	SM		
					expecta8ons	
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Abstract

A measurement of the Higgs boson mass is presented based on the combined data
samples of the ATLAS and CMS experiments at the CERN LHC in the H ! gg and
H ! ZZ ! 4` decay channels. The results are obtained from a simultaneous fit to
the reconstructed invariant mass peaks in the two channels and for the two experi-
ments. The measured masses from the individual channels and the two experiments
are found to be consistent among themselves. The combined measured mass of the
Higgs boson is mH = 125.09 ± 0.21 (stat.)± 0.11 (syst.) GeV.
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Figure 4: Summary of likelihood scans in the 2D plane of signal strength µ versus Higgs boson
mass mH for the ATLAS and CMS experiments. The 68% CL confidence regions of the individ-
ual measurements are shown by the dashed curves and of the overall combination by the solid
curve. The markers indicate the respective best-fit values.
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Figure 12: Best-fit results for the decay signal strengths for the combination of ATLAS and CMS. Also shown for
completeness are the results for each experiment. The error bars indicate the 1� intervals.

The rather large measured value of the combined µt tH leads to a tension between the observed ggF signal
strength and that for ttH production in cases such as the fit of the decay signal strengths, for which the
production cross sections are constrained to their SM values. This is mitigated to a certain extent by
a non-negligible pull of the gluon PDF nuisance parameter used for the Higgs boson signal, which is
anti-correlated between ggF and ttH production. This pull reduces the SM prediction of �ggF and, as a
consequence, the decay signal strengths of the channels mainly sensitive to ggF production are enhanced
for the combination of ATLAS and CMS. In the case of the H ! �� decay channel, which is mostly
sensitive to ggF production and for which the measurements of the two experiments are much closer to
each other than their overall uncertainty, this e�ect is most visible, but corresponds to only ⇠ 10% of the
total uncertainty. This explains the slightly larger measured combined value of µ�� compared to that of
the individual experiments.

From the combined likelihood scans it is possible to evaluate the significances for the observation of the
di�erent production processes and decay channels. The combination of the data from the two experiments
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The	Gauge	Hierarchy	Problem		

Higgs	mass	correc8ons	are	quadra8cally	sensi8ve		
to	UV	physics		

We	s8ll	suffering	from		

Ø  How	to	protect	the	correc8ons?		

Ex)	Supersymmetry:			fermions	ßà	bosons							

1 Introduction

ΩDMh
2 ≃ 0.12

V (φ) =
1

4
λ(φ)

(
φ2 − v2

)2
(1)

mh = 126 GeV (2)

Mt = 173.34 GeV (3)

αs(MZ) = 0.1184 (4)

λ(µ ≃ 1010 GeV) = 0 (5)

λ ≃ 0.13 (6)

∆m2
H = (7)

≃ − Y 2
t

16π2
Λ2 (8)

∆mψ ∼ mψ logΛ (9)

The minimal supersymmetric (SUSY) extension of the Standard Model (MSSM) is one of

the prime candidates for physics beyond the Standard Model (SM), which naturally solves

problems in the SM, in particular, the gauge hierarchy problem. In addition, a candidate for

the cold dark matter, which is missing in the SM, is also naturally incorporated in the MSSM.

Searching for SUSY is one of the major occupations of the Large Hadron Collider (LHC)

resources. The LHC is operating at unprecedented luminosities, and are collecting data very

rapidly. Discovery of physics beyond the Standard Model in the near future is highly likely,

and anticipated.

The MSSM can solve the gauge hierarchy problem and the dark matter problem, which it is

able to achieve merely by virtue of it being supersymmetric. However it is clear that the SUSY

extension is not enough to solve the aforementioned problems in addition to explaining neutrino

phenomena. This is because the solar and atmospheric neutrino oscillation have established

non-zero neutrino masses and mixings between different neutrino flavors [1]. Unlike the quark

sector, the scale of neutrino masses is very small and the different flavors are largely mixed. We

have no choice but to extend the MSSM in order to incorporate such neutrino masses and flavor

mixings. The seesaw extension [2] has gained much attention since it not only accounts for the

neutrino mass but also explains the smallness of the mass in a natural way. Corresponding to

the seesaw scale (the typical scale of right-handed neutrinos) being, for example, from 1 TeV

to 1014 GeV, the scale of the neutrino Dirac mass varies from 1 MeV (the electron mass scale)

to 100 GeV (the top quark mass scale).

The B − L (baryon number minus lepton number) is the unique anomaly-free global sym-

1

ßChiral	symmetry	
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Gauge-Higgs	Unifica8on	(GHU)	Scenario	

5D	Standard	Model	
5-dim.	theory	compac8fied	on	orbifold	

y	

SM	

All	SM	fields	except	Higgs	reside	in	the	bulk	

Higgs	boson	is	unified	into	5th	component	of	gauge	fields	
in	higher	dimension							

Manton,	NPB	158	(1979)	141		
Fairlie,	PLB	82	(1979)	97	
Hosotani,	PLB	126	(1983)	309		
																			PLB129	(183)	193	

Alterna8ve	to	SUSY?		



Basic	structure	 5D	SU(3)	gauge	theory	(toy	model)	

adj	 do
ub

le
t	

doublet	 singlet	

SU(3)	gauge	=	

Impose	non-trivial	boundary	condi8ons	(parity	assignment)	

	are	Z2	even	fields,	others	odd	fields	

Zero	modes	for	odd	fields	are	project	out,		
So		SU(3)	is	broken	to	SU(2)		8mes	U(1)		by	this	parity	assignment	



5D	SU(3)	GHU	Lagrangian	
5D	SU(3)	gauge	kine8c	
term	

SU(2)	x	U(1)		
EW	gauge	kine`c	term	 Higgs	doublet	kine`c	term	

No	Higgs	poten8al	@	tree	level	

Higgs	poten8al	is	generated	at	quantum	level	
with	Kaluza-Klein	fields		



Proper8es	

(1)	The	SM	Higgs	doublet		is	iden8fied	as	the	5th	component			
						of	5D	bulk	gauge	field			
	
(2)	Mass	term	and	Higgs	self-coupling	are	protected	
						by	the	5D	gauge	invariance	
	
(3)	5D	gauge	invariance	is	broken	by	the	boundary		
						condi8ons	and	as	a	result,	Higgs	mass	and	self-coupling		
						are	induced	through	quantum	correc8ons	at	low	energies			
	
(4)	However,	there	is	no	quadra8c	divergence	in	the	theory		1 Introduction
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1

Actual	mass	correc8ons	highly	
depend	on	bulk	fermion	contents	



(5)		Gauge-Higgs	condi8on:		
Haba,	Matsumoto,	NO	
&	Yamashita,	JHEP	02	
(2006)	073	

					Effec8ve	low	energy	of	5D	flat	GHU	at	E	<	MKK			
=		SM	(+extra	light	states)	+	GH	condi8on	for	Higgs	self-coupling			

	(1)		1-loop	effec8ve	poten8al	in	5D	GHU		

	(2)	1-loop	effec8ve	poten8al	in	SM	with	a	cutoff	

Leading	log	RGE	solu`on	with	B.C.		

We	calculated	effec8ve	quar8c	coupling	in	2	ways	
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ATLAS	&	CMS	combined	(2015)	
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1 Introduction

ΩDMh
2 ≃ 0.12

140 GeV ! mh ! 185 GeV (1)

V (φ) =
1

4
λ(φ)

(
φ2 − v2

)2
(2)

mh = 125.09 GeV (3)

Mt = 173.34 GeV (4)

αs(MZ) = 0.1184 (5)

λ(µ ≃ 1010 GeV) = 0 (6)

λ ≃ 0.13 (7)

∆m2
H = (8)

≃ − Y 2
t

16π2
Λ2 (9)

∆mψ ∼ mψ logΛ (10)

m2
φ +∆m2

φ = (mψ +∆mψ)
2 (11)

WY = Y ij
D N c

i HuLj (12)

λBL (13)

ψ (14)

⟨φ⟩ (15)

MBL = 1 TeV, mφ = 2 TeV mÑc
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UV	comple8on	of	the	SM	in	the	GHU	à		SM	with		
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ℓ/ν/ν (27)

ν1L, ν2L, ν2R, ν3L, ν3R (28)

ν1L, ν2L, ν2R, ν3L, ν3R (29)

ν2R ν2R (30)

ν3R ν3R (31)

ν1L ν1L (32)
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chirality are localized towards the opposite orbifold fixed points and as a result, their effective

4-dimensional Yukawa coupling is exponentially suppressed by the overlap integral of the wave

functions. In this way, we assume that all exotic fermion zero modes become very heavy and

realistic SM fermion mass matrices are achieved by adjusting the bulk mass parameters. For

more details towards constructing a realistic GHU scenario, see, for example, Refs. [23, 24].

Let us now investigate the way to reproduce the Higgs boson mass of around 125 GeV

in this 5-dimensional GHU model. It is a highly non-trivial task to propose a realistic GHU

scenario and calculate the Higgs boson mass in the context. However, in our effective theory

approach, the Higgs boson mass is easily calculated from the RG evolution of the Higgs quartic

coupling with the gauge-Higgs condition at the compactification scale, assuming the electroweak

symmetry breaking is correctly achieved. In order to reproduce the 125 GeV Higgs boson mass

for MKK ≪ 1010 GeV, we need to introduce a new fermion in the bulk. In this paper, we

introduce color singlet/triplet, 6 and 10-plet bulk fermions of the bulk SU(3) gauge symmetry

with U(1)′ charge Q as an example. We impose a (half) periodic boundary condition on the

bulk fermions, ψ(y + 2πRc) = ψ(y) (ψ(y + 2πRc) = −ψ(y)). To avoid massless states in the

periodic bulk fermions, we introduce Nf pairs of the bulk fermion multiplets with opposite

parities and a Z2-parity even bulk mass term between each pair of the bulk fermions. In the

same way, we introduce NHP
f pairs of half-periodic fermions with the Z2-parity even bulk mass

term, when we consider half-periodic bulk fermions.

We begin with the 6-plet of the bulk SU(3) gauge symmetry, which is decomposed into the

representations under the SU(2)×U(1) subgroup as

6 = 1−2/3 ⊕ 2−1/6 ⊕ 31/3, (3)

where the numbers in the subscript denote the U(1) charges. For these multiplets, the bulk

SU(3) gauge interaction leads to the Yukawa interaction of the form,

L ⊃ −YSDHS − YDDTH†, (4)

where S, D and T stand for the singlet, doublet and triplet fields in the decomposition of

Eq. (3), and YS and YD are Yukawa couplings. Because of the unification of the gauge and

Yukawa interactions, YS = YD = −ig2 at the compactification scale, where g2 is the SM

SU(2) gauge coupling. In solving RG equations, this condition is also imposed as the boundary

condition at the compactification scale. After the electroweak symmetry breaking the KK mass
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spectrum is found as follows:

(
m(±)

n,−2/3

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1/3

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+4/3

)2
= m2

n +M2, (5)

where the numbers in the subscript denote the “electric charges”4 of the corresponding KK

mode fermions, mn = nMKK with n = 0, 1, 2, · · · , MKK ≡ 1/Rc, mW = g2v/2 with v = 246

GeV, and M is a bulk mass. For simplicity, we use a common bulk mass M for the Nf

pairs. When a half-periodic boundary condition is imposed on the bulk fermion, the KK mass

spectrum are obtained by replacing n to n+ 1/2.

In the same way, we decompose the 10-plet as

10 = 1−1 ⊕ 2−1/2 ⊕ 30 ⊕ 41/2. (6)

For these SM multiplets, the bulk SU(3) gauge interaction leads to the Yukawa interaction of

the form,

L ⊃ −YSDHS − YDDTH† − YTFTH, (7)

where S, D, T and F stand for the singlet, doublet, triplet and quartet fields in the decompo-

sition of Eq. (6), and YS, YD and YT are Yukawa couplings. Because of the unification of the

gauge and Yukawa interactions, YS = YT = −i
√

3/2 g2 and YD = −i
√
2 g2 at the compactifi-

cation scale. These conditions are imposed as the boundary condition at the compactification

scale in our RG analysis. The KK mass spectrum after the electroweak symmetry breaking is

found as

(
m(±)

n,−1

)2
= (mn ± 3mW )2 +M2, (mn ±mW )2 +M2,

(
m(±)

n,0

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+2

)2
= m2

n +M2. (8)

Although the U(1)′ charge Q is a free parameter of the model, we have phenomenologically

favored values for it from the following discussion. As discussed in [25] (see also [26]), the

4Here “electric charges” mean by electric charges of SU(2)×U(1)⊂SU(3). A true electric charge of each KK
mode is given by a sum of the “electric charge” and U(1)′ charge Q.
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For the 15-plet case, the decomposition under SU(2)× U(1) is given as

15 = 1−4/3 ⊕ 2−5/6 ⊕ 3−1/3 ⊕ 41/6 ⊕ 52/3. (22)

After the electroweak symmetry breaking, the KK mass spectrum is found as follows:

(

m(±)
n,−4/3

)2
=
(

mn+ 1

2

± 4mW

)2
+M2,

(

mn+ 1

2

± 2mW

)2
+M2, m2

n+ 1

2

+M2,
(

m(±)
n,−1/3

)2
=
(

mn+ 1

2

± 3mW

)2
+M2,

(

mn+ 1

2

±mW

)2
+M2,

(

m(±)
n,2/3

)2
=
(

mn+ 1

2

± 2mW

)2
+M2, m2

n+ 1

2

+M2,
(

m(±)
n,5/3

)2
=
(

mn+ 1

2

±mW

)2
+M2,

(

m(±)
n,8/3

)2
= m2

n+ 1

2

+M2, (23)

where the numbers in the subscript denote the “electric charges” of the corresponding

KK fermions. In this case, the Higgs-to-diphoton coupling is calculated as

CKK−15
γγ ≃ (Q− 4/3)2F (4mW ) + (Q− 4/3)2F (2mW )

+ (Q− 1/3)2F (3mW ) + (Q− 1/3)2F (mW )

+ (Q+ 2/3)2F (2mW ) + (Q+ 5/3)2F (mW ). (24)

For the two cases, we plot the ratio R as a function of the KK mode mass mKK in

Fig. 2. The left panel corresponds to the case with the 10-plet bulk fermion, where we

have fixed Q = −1 and cB = 0.23. As we will see in the next section, the Higgs boson

mass around 125 GeV can be reproduced with the bulk mass cB = 0.23 for mKK = 3

TeV. The result for the case with the 15-plet bulk fermion is depicted in the right panel

for Q = −5 and cB = 0.69. This bulk mass reproduces the Higgs boson mass around

125 GeV. We find the Higgs-to-diphoton signal strength is considerably enhanced in the

presence of the half-periodic bulk fermions with the TeV scale mass.

As can be understood from Eqs. (20) and (24), the rate of the enhancement depends

on the choice of U(1)′ charge Q. In other words, it can be large as we like by adjusting

a U(1)′ charge. In Fig. 3, we plot the ratio of diphoton signal strength to the SM one

as a function of the U(1)′ charge Q, for the two cases. For each plot, the bulk masses
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chirality are localized towards the opposite orbifold fixed points and as a result, their effective

4-dimensional Yukawa coupling is exponentially suppressed by the overlap integral of the wave

functions. In this way, we assume that all exotic fermion zero modes become very heavy and

realistic SM fermion mass matrices are achieved by adjusting the bulk mass parameters. For

more details towards constructing a realistic GHU scenario, see, for example, Refs. [23, 24].

Let us now investigate the way to reproduce the Higgs boson mass of around 125 GeV

in this 5-dimensional GHU model. It is a highly non-trivial task to propose a realistic GHU

scenario and calculate the Higgs boson mass in the context. However, in our effective theory

approach, the Higgs boson mass is easily calculated from the RG evolution of the Higgs quartic

coupling with the gauge-Higgs condition at the compactification scale, assuming the electroweak

symmetry breaking is correctly achieved. In order to reproduce the 125 GeV Higgs boson mass

for MKK ≪ 1010 GeV, we need to introduce a new fermion in the bulk. In this paper, we

introduce color singlet/triplet, 6 and 10-plet bulk fermions of the bulk SU(3) gauge symmetry

with U(1)′ charge Q as an example. We impose a (half) periodic boundary condition on the

bulk fermions, ψ(y + 2πRc) = ψ(y) (ψ(y + 2πRc) = −ψ(y)). To avoid massless states in the

periodic bulk fermions, we introduce Nf pairs of the bulk fermion multiplets with opposite

parities and a Z2-parity even bulk mass term between each pair of the bulk fermions. In the

same way, we introduce NHP
f pairs of half-periodic fermions with the Z2-parity even bulk mass

term, when we consider half-periodic bulk fermions.

We begin with the 6-plet of the bulk SU(3) gauge symmetry, which is decomposed into the

representations under the SU(2)×U(1) subgroup as

6 = 1−2/3 ⊕ 2−1/6 ⊕ 31/3, (3)

where the numbers in the subscript denote the U(1) charges. For these multiplets, the bulk

SU(3) gauge interaction leads to the Yukawa interaction of the form,

L ⊃ −YSDHS − YDDTH†, (4)

where S, D and T stand for the singlet, doublet and triplet fields in the decomposition of

Eq. (3), and YS and YD are Yukawa couplings. Because of the unification of the gauge and

Yukawa interactions, YS = YD = −ig2 at the compactification scale, where g2 is the SM

SU(2) gauge coupling. In solving RG equations, this condition is also imposed as the boundary

condition at the compactification scale. After the electroweak symmetry breaking the KK mass

5

chirality are localized towards the opposite orbifold fixed points and as a result, their effective

4-dimensional Yukawa coupling is exponentially suppressed by the overlap integral of the wave

functions. In this way, we assume that all exotic fermion zero modes become very heavy and

realistic SM fermion mass matrices are achieved by adjusting the bulk mass parameters. For

more details towards constructing a realistic GHU scenario, see, for example, Refs. [23, 24].

Let us now investigate the way to reproduce the Higgs boson mass of around 125 GeV

in this 5-dimensional GHU model. It is a highly non-trivial task to propose a realistic GHU

scenario and calculate the Higgs boson mass in the context. However, in our effective theory

approach, the Higgs boson mass is easily calculated from the RG evolution of the Higgs quartic

coupling with the gauge-Higgs condition at the compactification scale, assuming the electroweak

symmetry breaking is correctly achieved. In order to reproduce the 125 GeV Higgs boson mass

for MKK ≪ 1010 GeV, we need to introduce a new fermion in the bulk. In this paper, we

introduce color singlet/triplet, 6 and 10-plet bulk fermions of the bulk SU(3) gauge symmetry

with U(1)′ charge Q as an example. We impose a (half) periodic boundary condition on the

bulk fermions, ψ(y + 2πRc) = ψ(y) (ψ(y + 2πRc) = −ψ(y)). To avoid massless states in the

periodic bulk fermions, we introduce Nf pairs of the bulk fermion multiplets with opposite

parities and a Z2-parity even bulk mass term between each pair of the bulk fermions. In the

same way, we introduce NHP
f pairs of half-periodic fermions with the Z2-parity even bulk mass

term, when we consider half-periodic bulk fermions.

We begin with the 6-plet of the bulk SU(3) gauge symmetry, which is decomposed into the

representations under the SU(2)×U(1) subgroup as

6 = 1−2/3 ⊕ 2−1/6 ⊕ 31/3, (3)

where the numbers in the subscript denote the U(1) charges. For these multiplets, the bulk

SU(3) gauge interaction leads to the Yukawa interaction of the form,

L ⊃ −YSDHS − YDDTH†, (4)

where S, D and T stand for the singlet, doublet and triplet fields in the decomposition of

Eq. (3), and YS and YD are Yukawa couplings. Because of the unification of the gauge and

Yukawa interactions, YS = YD = −ig2 at the compactification scale, where g2 is the SM

SU(2) gauge coupling. In solving RG equations, this condition is also imposed as the boundary

condition at the compactification scale. After the electroweak symmetry breaking the KK mass
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spectrum is found as follows:

(
m(±)

n,−2/3

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1/3

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+4/3

)2
= m2

n +M2, (5)

where the numbers in the subscript denote the “electric charges”4 of the corresponding KK

mode fermions, mn = nMKK with n = 0, 1, 2, · · · , MKK ≡ 1/Rc, mW = g2v/2 with v = 246

GeV, and M is a bulk mass. For simplicity, we use a common bulk mass M for the Nf

pairs. When a half-periodic boundary condition is imposed on the bulk fermion, the KK mass

spectrum are obtained by replacing n to n+ 1/2.

In the same way, we decompose the 10-plet as

10 = 1−1 ⊕ 2−1/2 ⊕ 30 ⊕ 41/2. (6)

For these SM multiplets, the bulk SU(3) gauge interaction leads to the Yukawa interaction of

the form,

L ⊃ −YSDHS − YDDTH† − YTFTH, (7)

where S, D, T and F stand for the singlet, doublet, triplet and quartet fields in the decompo-

sition of Eq. (6), and YS, YD and YT are Yukawa couplings. Because of the unification of the

gauge and Yukawa interactions, YS = YT = −i
√

3/2 g2 and YD = −i
√
2 g2 at the compactifi-

cation scale. These conditions are imposed as the boundary condition at the compactification

scale in our RG analysis. The KK mass spectrum after the electroweak symmetry breaking is

found as

(
m(±)

n,−1

)2
= (mn ± 3mW )2 +M2, (mn ±mW )2 +M2,

(
m(±)

n,0

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+2

)2
= m2

n +M2. (8)

Although the U(1)′ charge Q is a free parameter of the model, we have phenomenologically

favored values for it from the following discussion. As discussed in [25] (see also [26]), the

4Here “electric charges” mean by electric charges of SU(2)×U(1)⊂SU(3). A true electric charge of each KK
mode is given by a sum of the “electric charge” and U(1)′ charge Q.
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(
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n +M2, (5)

where the numbers in the subscript denote the “electric charges”4 of the corresponding KK

mode fermions, mn = nMKK with n = 0, 1, 2, · · · , MKK ≡ 1/Rc, mW = g2v/2 with v = 246

GeV, and M is a bulk mass. For simplicity, we use a common bulk mass M for the Nf

pairs. When a half-periodic boundary condition is imposed on the bulk fermion, the KK mass

spectrum are obtained by replacing n to n+ 1/2.

In the same way, we decompose the 10-plet as

10 = 1−1 ⊕ 2−1/2 ⊕ 30 ⊕ 41/2. (6)

For these SM multiplets, the bulk SU(3) gauge interaction leads to the Yukawa interaction of

the form,

L ⊃ −YSDHS − YDDTH† − YTFTH, (7)

where S, D, T and F stand for the singlet, doublet, triplet and quartet fields in the decompo-

sition of Eq. (6), and YS, YD and YT are Yukawa couplings. Because of the unification of the

gauge and Yukawa interactions, YS = YT = −i
√

3/2 g2 and YD = −i
√
2 g2 at the compactifi-

cation scale. These conditions are imposed as the boundary condition at the compactification

scale in our RG analysis. The KK mass spectrum after the electroweak symmetry breaking is

found as

(
m(±)

n,−1

)2
= (mn ± 3mW )2 +M2, (mn ±mW )2 +M2,

(
m(±)

n,0

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+2

)2
= m2

n +M2. (8)

Although the U(1)′ charge Q is a free parameter of the model, we have phenomenologically

favored values for it from the following discussion. As discussed in [25] (see also [26]), the

4Here “electric charges” mean by electric charges of SU(2)×U(1)⊂SU(3). A true electric charge of each KK
mode is given by a sum of the “electric charge” and U(1)′ charge Q.

6

chirality are localized towards the opposite orbifold fixed points and as a result, their effective

4-dimensional Yukawa coupling is exponentially suppressed by the overlap integral of the wave

functions. In this way, we assume that all exotic fermion zero modes become very heavy and

realistic SM fermion mass matrices are achieved by adjusting the bulk mass parameters. For

more details towards constructing a realistic GHU scenario, see, for example, Refs. [23, 24].

Let us now investigate the way to reproduce the Higgs boson mass of around 125 GeV

in this 5-dimensional GHU model. It is a highly non-trivial task to propose a realistic GHU

scenario and calculate the Higgs boson mass in the context. However, in our effective theory

approach, the Higgs boson mass is easily calculated from the RG evolution of the Higgs quartic

coupling with the gauge-Higgs condition at the compactification scale, assuming the electroweak

symmetry breaking is correctly achieved. In order to reproduce the 125 GeV Higgs boson mass

for MKK ≪ 1010 GeV, we need to introduce a new fermion in the bulk. In this paper, we

introduce color singlet/triplet, 6 and 10-plet bulk fermions of the bulk SU(3) gauge symmetry

with U(1)′ charge Q as an example. We impose a (half) periodic boundary condition on the

bulk fermions, ψ(y + 2πRc) = ψ(y) (ψ(y + 2πRc) = −ψ(y)). To avoid massless states in the

periodic bulk fermions, we introduce Nf pairs of the bulk fermion multiplets with opposite

parities and a Z2-parity even bulk mass term between each pair of the bulk fermions. In the

same way, we introduce NHP
f pairs of half-periodic fermions with the Z2-parity even bulk mass

term, when we consider half-periodic bulk fermions.

We begin with the 6-plet of the bulk SU(3) gauge symmetry, which is decomposed into the

representations under the SU(2)×U(1) subgroup as

6 = 1−2/3 ⊕ 2−1/6 ⊕ 31/3, (3)

where the numbers in the subscript denote the U(1) charges. For these multiplets, the bulk

SU(3) gauge interaction leads to the Yukawa interaction of the form,

L ⊃ −YSDHS − YDDTH†, (4)

where S, D and T stand for the singlet, doublet and triplet fields in the decomposition of

Eq. (3), and YS and YD are Yukawa couplings. Because of the unification of the gauge and

Yukawa interactions, YS = YD = −ig2 at the compactification scale, where g2 is the SM

SU(2) gauge coupling. In solving RG equations, this condition is also imposed as the boundary

condition at the compactification scale. After the electroweak symmetry breaking the KK mass
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spectrum is found as follows:

(
m(±)

n,−2/3

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1/3

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+4/3

)2
= m2

n +M2, (5)

where the numbers in the subscript denote the “electric charges”4 of the corresponding KK

mode fermions, mn = nMKK with n = 0, 1, 2, · · · , MKK ≡ 1/Rc, mW = g2v/2 with v = 246

GeV, and M is a bulk mass. For simplicity, we use a common bulk mass M for the Nf

pairs. When a half-periodic boundary condition is imposed on the bulk fermion, the KK mass

spectrum are obtained by replacing n to n+ 1/2.

In the same way, we decompose the 10-plet as

10 = 1−1 ⊕ 2−1/2 ⊕ 30 ⊕ 41/2. (6)

For these SM multiplets, the bulk SU(3) gauge interaction leads to the Yukawa interaction of

the form,

L ⊃ −YSDHS − YDDTH† − YTFTH, (7)

where S, D, T and F stand for the singlet, doublet, triplet and quartet fields in the decompo-

sition of Eq. (6), and YS, YD and YT are Yukawa couplings. Because of the unification of the

gauge and Yukawa interactions, YS = YT = −i
√

3/2 g2 and YD = −i
√
2 g2 at the compactifi-

cation scale. These conditions are imposed as the boundary condition at the compactification

scale in our RG analysis. The KK mass spectrum after the electroweak symmetry breaking is

found as

(
m(±)

n,−1

)2
= (mn ± 3mW )2 +M2, (mn ±mW )2 +M2,

(
m(±)

n,0

)2
= (mn ± 2mW )2 +M2, m2

n +M2,
(
m(±)

n,+1

)2
= (mn ±mW )2 +M2,

(
m(±)

n,+2

)2
= m2

n +M2. (8)

Although the U(1)′ charge Q is a free parameter of the model, we have phenomenologically

favored values for it from the following discussion. As discussed in [25] (see also [26]), the

4Here “electric charges” mean by electric charges of SU(2)×U(1)⊂SU(3). A true electric charge of each KK
mode is given by a sum of the “electric charge” and U(1)′ charge Q.
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mode fermions, mn = nMKK with n = 0, 1, 2, · · · , MKK ≡ 1/Rc, mW = g2v/2 with v = 246

GeV, and M is a bulk mass. For simplicity, we use a common bulk mass M for the Nf
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sition of Eq. (6), and YS, YD and YT are Yukawa couplings. Because of the unification of the
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mode is given by a sum of the “electric charge” and U(1)′ charge Q.
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where the numbers in the subscript denote the “electric charges”4 of the corresponding KK

mode fermions, mn = nMKK with n = 0, 1, 2, · · · , MKK ≡ 1/Rc, mW = g2v/2 with v = 246

GeV, and M is a bulk mass. For simplicity, we use a common bulk mass M for the Nf

pairs. When a half-periodic boundary condition is imposed on the bulk fermion, the KK mass

spectrum are obtained by replacing n to n+ 1/2.
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chirality are localized towards the opposite orbifold fixed points and as a result, their effective

4-dimensional Yukawa coupling is exponentially suppressed by the overlap integral of the wave

functions. In this way, we assume that all exotic fermion zero modes become very heavy and

realistic SM fermion mass matrices are achieved by adjusting the bulk mass parameters. For

more details towards constructing a realistic GHU scenario, see, for example, Refs. [23, 24].

Let us now investigate the way to reproduce the Higgs boson mass of around 125 GeV

in this 5-dimensional GHU model. It is a highly non-trivial task to propose a realistic GHU

scenario and calculate the Higgs boson mass in the context. However, in our effective theory

approach, the Higgs boson mass is easily calculated from the RG evolution of the Higgs quartic

coupling with the gauge-Higgs condition at the compactification scale, assuming the electroweak

symmetry breaking is correctly achieved. In order to reproduce the 125 GeV Higgs boson mass

for MKK ≪ 1010 GeV, we need to introduce a new fermion in the bulk. In this paper, we

introduce color singlet/triplet, 6 and 10-plet bulk fermions of the bulk SU(3) gauge symmetry

with U(1)′ charge Q as an example. We impose a (half) periodic boundary condition on the

bulk fermions, ψ(y + 2πRc) = ψ(y) (ψ(y + 2πRc) = −ψ(y)). To avoid massless states in the

periodic bulk fermions, we introduce Nf pairs of the bulk fermion multiplets with opposite

parities and a Z2-parity even bulk mass term between each pair of the bulk fermions. In the

same way, we introduce NHP
f pairs of half-periodic fermions with the Z2-parity even bulk mass

term, when we consider half-periodic bulk fermions.

We begin with the 6-plet of the bulk SU(3) gauge symmetry, which is decomposed into the

representations under the SU(2)×U(1) subgroup as

6 = 1−2/3 ⊕ 2−1/6 ⊕ 31/3, (3)

where the numbers in the subscript denote the U(1) charges. For these multiplets, the bulk

SU(3) gauge interaction leads to the Yukawa interaction of the form,

L ⊃ −YSDHS − YDDTH†, (4)

where S, D and T stand for the singlet, doublet and triplet fields in the decomposition of

Eq. (3), and YS and YD are Yukawa couplings. Because of the unification of the gauge and

Yukawa interactions, YS = YD = −ig2 at the compactification scale, where g2 is the SM

SU(2) gauge coupling. In solving RG equations, this condition is also imposed as the boundary

condition at the compactification scale. After the electroweak symmetry breaking the KK mass
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spectrum is found as follows:
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Although the U(1)′ charge Q is a free parameter of the model, we have phenomenologically

favored values for it from the following discussion. As discussed in [25] (see also [26]), the

4Here “electric charges” mean by electric charges of SU(2)×U(1)⊂SU(3). A true electric charge of each KK
mode is given by a sum of the “electric charge” and U(1)′ charge Q.
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Figure 1: The RG evolutions of the Higgs quartic coupling, which can reproduce the Higgs boson
pole mass ofmH = 125.09 GeV. The solid line denotes the running Higgs quartic coupling in the
SM. The dashed and dotted lines correspond, respectively, to the 6-plets for Nf = 2, Nc = 1,
Q = 2/3 and (MKK,m0) = (12.7, 1.5) TeV, and the 6-plet for Nf = 1, Nc = 3, Q = 4/3 and
(MKK,m0) = (5.65, 1.5) TeV.

dashed (dotted) line corresponds to the result for the case with Nf = 2 (Nf = 1) pair of 6-plet,

color singlet (triplet) bulk fermions with U(1)′ charge Q = 2/3 (Q = 4/3). For the dashed

(dotted) line, we find m0 = 1.5 TeV for MKK = 12.7 (5.65) TeV, at which the gauge-Higgs

condition is satisfied. When we trace the dashed and dotted lines from Mt to higher energies

we see that the running of the Higgs quartic coupling is drastically altered from the SM one

(solid line) due to the contributions from the bulk fermions with m0 = 1.5 TeV. Since the

beta function of the Higgs quartic coupling becomes more negative in the presence of the bulk

fermions (see Eq. (20)), the running Higgs quartic coupling reaches the compactification scale

far below 1010 GeV. We also show in Fig. 2 the RG evolutions of the SM SU(2) gauge coupling

(solid line) and Yukawa couplings |YS| (dashed line) and |YD| (dotted line) for the case with

Nf = 2 pair of 6-plet, color singlet bulk fermions with Q = 2/3, corresponding to the dashed

line in Fig. 1. We can see that the boundary condition from the unification between the gauge

and Yukawa couplings, |YS| = |YD| = g2, is satisfied at MKK = 12.7 TeV.

Once the compactification scale MKK is fixed, the lightest fermion mass m0 is determined

so as to reproduce the Higgs boson pole mass of mH = 125.09 GeV. The relation between MKK

and m0 is depicted in Fig. 3. In the left panel we show the relation for the color singlet, 6-plet
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Once the compactification scale MKK is fixed, the lightest fermion mass m0 is determined

so as to reproduce the Higgs boson pole mass of mH = 125.09 GeV. The relation between MKK

and m0 is depicted in Fig. 3. In the left panel we show the relation for the color singlet, 6-plet
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MKK	V.S	m0	in	order	to	reproduce	mh=125.09	GeV	
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Figure 5: The relation between MKK and m0 to reproduce the Higgs boson pole mass of
mH = 125.09 GeV. The solid and dashed lines denote the results for the color singlet, 10-plet
bulk fermions with Nf = 1 and Nf = 2, respectively. Here we have taken Q = 1. The dotted
and dash-dotted lines represent the results for the color triplet, 10-plet bulk fermions with
Nf = 1 and Nf = 2 (NHP

f = 1), respectively. We have taken Q = 5/3 for the 10-plets.

3 Higgs boson production and decay in GHU model

Through quantum corrections at the one-loop level, the bulk fermions contribute to the Higgs

boson production and decay processes and deviate the Higgs boson signal strengths at the LHC

experiments from the SM predictions. In this section, we evaluate the contributions from the

bulk 6-plet and 10-plet fermions to the Higgs boson production and decay processes at the

LHC, and lead to a lower mass bound for the lightest bulk fermion.

3.1 Bulk fermion contributions to the gluon fusion channel

At the LHC, the Higgs boson is dominantly produced via gluon fusion process with the following

dimension five operator between the Higgs boson and di-gluon:

Leff = CgghG
a
µνG

aµν , (27)

where h is the SM Higgs boson, and Ga
µν (a = 1 − 8) is the gluon field strength. The SM

contribution to Cgg is dominated by top quark 1-loop corrections. As a good approximation,
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Contribu8ons	to	effec8ve	Higgs	boson	couplings		
Kaluza-Klein	modes	of	the	SM	par8cle	and	new	bulk	
fermions	contribute	Higgs-to-digluon,	diphoton	couplings		

gluon	

gluon	

	top	quark	loop		

+	Kaluza-Klein	top		
+	new	colored	bulk	fermions	

W	boson	loop	
	top	quark	loop		
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SU(3)	x	U(1)’	GHU	model	
	with	10-plet	bulk	color	triplet-fermion	realizing	mh=125.09	GeV	

	The	KK	mode	contribu8on	to	Higgs-digluon	coupling		
	alters	the	Higgs	boson	produc8on	cross	sec8on	at	LHC	

Carson	&	NO.,	arXiv:	1510.03092	
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Figure 6: The ratio of the Higgs production cross section in our model to the SM one as a
function of the lightest bulk fermion massm0. The left panel shows the results for the 6-plet case
corresponding to the right panel of Fig. 3. The results for the 10-plet case, corresponding to the
dotted and dash-dotted lines in Fig. 5, are depicted in the right panel. Here we have considered
the periodic boundary condition for the dotted line in Fig. 5, while the half-periodic boundary
condition for the dash-dotted line in Fig. 5. The dotted and dash-dotted lines represent the
results for the periodic and half-periodic 10-plet fermions, respectively.

Fig. 5. The dotted and dash-dotted lines represent the results for the periodic and half-periodic

10-plet fermions, respectively.

In the presence of the bulk fermions, the Higgs production cross section in the gluon fusion

channel is altered from the SM prediction. This deviation becomes larger asm0 (or equivalently,

MKK) is lowered. Since the Higgs boson properties measured by the LHC experiments are

found to be consistent with the SM predictions [4], we can find a lower bound for m0 from the

LHC results. Employing the results from a combined analysis by the ATLAS and the CMS

collaborations [4], 0.88 ≤ Rgg ≤ 1.2, we can read off a lower bound of the lightest bulk fermion

mass m0 from Fig. 6. Our results are summarized in Table 1. The lower bounds are found to

be at the TeV scale, so that such exotic colored particles can be tested at the LHC Run II with
√
s = 13− 14 TeV.

3.2 Bulk fermion contributions to h → γγ

Since the bulk fermions have electric charges, they also contribute to the effective Higgs boson

coupling with di-photon of the dimension five operator,

Leff = CγγhFµνF
µν , (37)

where Fµν denotes the photon field strength. In the SM, this effective coupling is induced

by the top quark and W -boson loop corrections. In addition to the SM contributions, we
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results for the periodic and half-periodic 10-plet fermions, respectively.

Fig. 5. The dotted and dash-dotted lines represent the results for the periodic and half-periodic

10-plet fermions, respectively.

In the presence of the bulk fermions, the Higgs production cross section in the gluon fusion

channel is altered from the SM prediction. This deviation becomes larger asm0 (or equivalently,

MKK) is lowered. Since the Higgs boson properties measured by the LHC experiments are

found to be consistent with the SM predictions [4], we can find a lower bound for m0 from the

LHC results. Employing the results from a combined analysis by the ATLAS and the CMS

collaborations [4], 0.88 ≤ Rgg ≤ 1.2, we can read off a lower bound of the lightest bulk fermion

mass m0 from Fig. 6. Our results are summarized in Table 1. The lower bounds are found to

be at the TeV scale, so that such exotic colored particles can be tested at the LHC Run II with
√
s = 13− 14 TeV.

3.2 Bulk fermion contributions to h → γγ

Since the bulk fermions have electric charges, they also contribute to the effective Higgs boson

coupling with di-photon of the dimension five operator,

Leff = CγγhFµνF
µν , (37)

where Fµν denotes the photon field strength. In the SM, this effective coupling is induced

by the top quark and W -boson loop corrections. In addition to the SM contributions, we
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BC N (HP)
f Q m0 (TeV) MKK (TeV)

6-plet P 1 4/3 0.685 2.83
6-plet P 2 4/3 0.710 1.64
10-plet P 1 5/3 0.663 0.908
10-plet HP 1 5/3 1.41 1.64

top quark KK mode 1.26

Table 1: The lower bound on the lightest bulk fermion masses and the compactification scales
from the ATLAS and CMS combined analysis, 0.88 ≤ Rgg ≤ 1.2, for the cases with the color-
triplet, 6 or 10-plet bulk fermion. Here, the initials, “BC”, “P” and “HP” stand for “boundary
condition”, “periodic” and “half-periodic”, respectively. We have also shown in the last row
the lower bound on the compactification scale when only the top quark KK modes is taken into
account.

have contributions from the KK modes of top quark, W -boson, and the 6-plet or 10-plet bulk

fermion.

We begin with the top quark loop contribution. By using the Higgs low energy theorem,

we have

CSMtop
γγ ≃ e2bt1

32π2v

∂

∂ log v
logmt =

2αem

9πv
, (38)

where b1 = (4/3) × (2/3)2 × 3 = 4/3 is a top quark contribution to the QED beta function

coefficient, and αem is the fine structure constant. Corresponding KK top quark contribution

is given by5

CKKtop
γγ ≃ e2bt1

32π2v

∞∑

n=1

∂

∂ log v
[log(mn +Mt) + log(mn −Mt)]

≃ −2αem

9πv
× π2

3

(
Mt

MKK

)2

. (39)

As the same for the contribution to the effective Higgs coupling with digluon, the KK top quark

contribution is destructive to the top quark contribution.

Applying the Higgs low energy theorem, the SM W -boson loop contribution is calculated

as

CW
γγ ≃ e2

32π2v
bW1

∂

∂ log v
logmW = −7αem

8πv
(40)

where mW = g2v/2, and bW1 = −7 is a W -boson contribution to the QED beta function

coefficient. Since 4m2
W/m2

h ≫ 1 is not well satisfied, this estimate is rough. In the following

numerical analysis, we use the known loop-function for the W -boson loop correction [27].
5Very interestingly, it has been found [29] that there is no the KK mode contribution to the Higgs effective

coupling with Z and γ in the present model.
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Lightest	KK	colored	fermion		
Mass		>	700	GeV	–	1.4	TeV	
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	The	KK	mode	contribu8on	to	Higgs-digphoton	coupling		
	alters	the	signal	strength	of	Higgs-to-diphoton	channel	
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Figure 8: The signal strength as a function of the lightest bulk fermion mass m0. The left panel
shows the results for the 6-plet case corresponding to the right panel of Fig. 3. The results for
the 10-plet case, corresponding to the dotted and dash-dotted lines in Fig. 5, are depicted in
the right panel. Here we have considered the periodic boundary condition for the dotted line in
Fig. 5, while the half-periodic boundary condition for the dash-dotted line Fig. 5. The dotted
and dash-dotted lines represent the results for the periodic and half-periodic 10-plet fermions,
respectively.

BC N (HP)
f Q m0 (TeV) MKK (TeV)

10-plet P 1 5/3 2.30 3.01
10-plet HP 1 5/3 2.46 2.83

Table 3: The lower bound on the lightest bulk colored fermion masses and the compactification
scales from the ATLAS and CMS combined analysis, 0.98 ≤ µγγ ≤ 1.36. We have obtained the
lower bound only for the 10-plet bulk fermions.

hence alter this signal strength from the SM prediction. The signal strength is calculated by

µγγ ≃ σ(gg → h → γγ)

σ(gg → h → γγ)SM
= Rgg ×Rγγ . (48)

We show our results in Fig. 8 for the color-triplet, 6-plet (left panel) and 10-plet fermions.

The left panel shows the results for the 6-plet case presented in the right panel of Fig. 3. The

solid and dashed lines are corresponding to the same types of lines in the left panel of Fig. 3.

The results for the 10-plet case, which correspond to the dotted and the dash-dotted lines in

Fig. 5, are depicted in the right panel. As the same in Fig. 6 the dotted line represents the

case with the periodic boundary condition, while the dash-dotted line corresponds to the case

with the half-periodic boundary condition. Employing the constraint, 0.98 ≤ µγγ ≤ 1.36,

from the ATLAS and CMS combined analysis [4], we can find a lower bound on m0 from

Fig. 8. No lower bound can be obtained from the results on the left panel. For the 6-plet
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Conclusions	

The	Higgs	boson	is	finally	discovered!		
	
Higgs	physics,	one	of	the	most	important	research	area	
in	par8cle	physics,	has	just	begun.			
	
There	are	many	things	to	do	to	test	the	SM	Higgs	
sector.	
	
Observed	Higgs	boson	proper8es	have	lots	of	
implica8ons	to	new	physics	beyond	the	SM.				



Gauge-Higgs	unifica8on	as	UV	comple8on		
of	the	Standard	Model		

					
					Quadra8c	divergence	free	à	KK	mode	mass	as	an	effec8ve	cutoff	
	
					Gauge-Higgs	condi8on	à	new	interpreta8on	of		a	vanishing		
																																																				Higgs	quar8c	coupling	
					
					Reproducing	Higgs	mass	125	GeV			
																																																			with	(half)periodic	fermions	
																																																												GH		condi8on	at	TeV	
		
					New	contribu8ons	to	Higgs-diguon/diphoton	coupling		
	
						Measured	Higgs	proper8es	constrain	KK	mass	~>	1	TeV.	
	
					Hun8ng	KKs	@	LHC	Run	2							


