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@ Motivation

* Run 2 Goal: Discovery of new physics, ideal search strategies should be-

(d Model independent: BSM may show up somewhere, not expected
from theoretical viewpoint

(d Maximally Sensitive: need every last bit of information to have
enough statistical significance for discovery

* A powerful approach for new physics searches:

Identify structural “features” in data (i.e, odd
features in the distribution of some variable)

Example:
v/ Resonance peak
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Motivation

* Run 2 Goal: Discovery of new physics, ideal search strategies should be-

(d Model independent: BSM may show up somewhere, not expected
from theoretical viewpoint

(d Maximally Sensitive: need every last bit of information to have
enough statistical significance for discovery

* A powerful approach for new physics searches:

Identify structural “features” in data (i.e, odd
features in the distribution of some variable)

Example:
v Resonance peak
v Kinematic endpoint
v Kinematic edge
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(@ Edges and endpoints in SUSY searches

* Well established technique for SUSY search (1-dim): visible decay products
have edges and endpoints in their invariant mass distribution

Example: 7= F =" %! > wl P atiag

JLdt=3 10* pb”’

—_ signal
..... SM backg |
_-_ SUSY backg

* For SUSY discovery we can use additional variables
(e.g. if more than two visible final state particles,

events/4 GeV

consider invariant masses of different pairs of m, -
partic les ) . ) X A TE N
. — — l ¥ — gl*l” m, (GeV)
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[Constanzo, Tovey (2009)] [Burns, Matchev, Park (2009)] [Gjelsten, Miller, Osland(2005)]
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Challenges of edge detection

Then the goal is to find edges in more than 1 dimension. Edge
detection in HEP data is non trivial

J Especially with relatively sparse data (as opposed to edge
detection in image)

J We may not know analytically the class of distributions
describing the data.

dThe data may be in more than two dimensions.
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Challenges of edge detection

Then the goal is to find edges in more than 1 dimension. Edge
detection in HEP data is non trivial

5/10/16

J Especially with relatively sparse data (as opposed to edge
detection in image) v/

J We may not know analytically the class of distributions
describing the data. v/

dThe data may be in more than two dimensions. v/

We propose method of edge detection using geometric
properties of Voronoi tessellations
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What are Voronoi tessellations?

* Tessellation: breaking up space into regions
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What are Voronoi tessellations?

* Tessellation: breaking up space into regions
* Voronoi tessellation method:

o Take a set of seed points in space

o Divide space into regions where a given data point is the closest data point
o Region = “Voronoi cell”

Voronoi tessellations have been widely applied in Mathematics, Condensed matter physics,
Astrophysics, and occasionally in particle physics (SLEUTH [hep-ex/ 006011], FastJet[Cacciari,
Salam, Soyez:1111.6097])
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Method of Edge Detection

: : : Our Choices :: :

test statistic test statistic
Signal (edge) is in-between Signal (edge) is well-separated
background (non-edge). from background (non-edge)
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Method of Edge Detection

: : : Our Choices :: :

test statistic test statistic
Signal (edge) is in-between Signal (edge) is well-separated
background (non-edge). from background (non-edge)

/7

** Choices: Scaled standard deviation

(a; —a)°
JZ NT-T

5'1'5

QI =

JEN;

For a given cell, consider the neighboring
cells and their areas. An edge cell will have
a big spread in neighboring areas.

5/10/16 Pheno 2016




Method of Edge Detection

/7

For a given cell, consider the neighboring

Signal (edge) is in-between
background (non-edge).

test statistic

Ou

q [

SN N

JEN;

** Choices: Scaled standard deviation

(a; —a)°
2 N1

cells and their areas. An edge cell will have

a big spread in neighboring areas.
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density of points from left to right region as 6.
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Method of Edge Detection

Our choices A
I
i
i
i

*»* Choices: Amplitude and phase angle of gradient vector
Compute the gradient vector (A;, ¢,) at each data point. ®

(V)i = (A;cos i, A;sin ;) = ffz

Method
* The directional derivative for the i-th Voronoi cell
toward the j-th neighbor.

f(&;) — f(Z;)

(Vi £)i = (aia;)

|7 — 7l
where [f() ~ N s T P (cos ij,sin ;)

* Finally, extract the amplitude and phase of the gradient vector by fitting the
directional derivative to

. v v/
(Va, )i = (V)i iy = Aicos(i — @ij)

5/10/16 Pheno 2016




5/10/16

Method of Edge Detection

Amplitude
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 Edge cells are characterized with relatively large gradient magnitudes.
 The directions of their gradients are correlated.

350 randomly generated data points within unit square with density of data points from left to right
region as 6.
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Method of Edge Detection

Our choices
¢ Choices: Average scalar product of the gradient vectors
The average scalar product of the gradient vectors for a given cell.
]. — —
S; = AzA
Vil 2 ’

JEN;

Edge cells
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Method of Edge Detection

Our choices
¢ Choices: Average scalar product of the gradient vectors
The average scalar product of the gradient vectors for a given cell.

I PR
S, = ’NZ‘ Z AIAJ
JEN; 1.0 e

Edge cells

40.8

40.6

000 02 04 06 08 10
The average scalar product of the gradient vectors should be higher for
edge cells as they have large gradient magnitudes.
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Quantify Sensitivity of Variables

ROC curves

Assumption: edge cells <> signal, non-edge cells <~ background

Events survived
after cut

1.0,1.0)
No cuts

cut

Area under curve
= Sensitivity of
variable

Signal fraction after cut

Test statistic (0.0,0.0) Background fraction after cut

All events removed

ROC curve with greater areas are more sensitive variable
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Quantify Sensitivity of Variables

* We notice that three quantities scaled standard deviation, amplitude, average
scalar product of the gradient vectors are quite successful in identifying edge

cells.

* Plot signal selection efficiency
vs. the background efficiency for
different values of cut on these
three variables.

The scaled standard
deviation does best in the
relevant range of very low ¢
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Improved Edge Finding

Problem:

One issue in distinguishing edge cells from non-edge cells is the presence of
statistical fluctuations (spot the non-edge cells inside red circles)

41.05
40.90

1l 40.75

1| H{0.60
0.45

0.30

015 color: scaled standard deviation

QL L o A W |
0.0 0.2 04 06 0.8 1.0

Is there a way to filter out statistical fluctuations but preserve the
underlying features?
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Improved Edge Finding

Lloyd’s algorithm

* We can smooth out statistical
fluctuations in the data by
replacing each point (black dot)
with the centroid (red square) of
its cell

T

* Points (black) are not
necessarily located at the center
of mass / centroid (red) of cell

T

e Black: Voronoi tessellations of
randomly generated points

Red: Voronoi tessellations after 1 Lloyd iteration
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Improved Edge Finding

Increased sensitivity from Lloyd’s algorithms

Signal selection efficiency vs. the background efficiency for different values of
cut on scaled standard deviation. 10

« Solid (dashed) lines show ROC 0.8
curves after (before) using Lloyd’s _
Algorithm. § 0.6

* Tested with different density 2 o4

o
ratios. [

Better signal sensitivity (edge) after _
Lloyd iterations

|
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Background Fraction

(Debnath, Gainer, Kim, Matchev, 2015)
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* Signal: Squark pair production; asymmetric topology. Signature 2 jets and 2
leptons.

* Mass spectrum: 400 (Squark), 300 (2" neutralino), 280(slepton), 200 (LSP)
GeV.

. 1 2 2
* Foragiven event, we consider 11, and m;,

1. Combinatorial background arising from the choice of jets is considered.
2. We also include background from top pair productions.
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Black solid curve:
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for edge
[Burns, Matchev, Park 0
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Application

Result: Scaled standard deviation after 5 Lloyd steps
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Result: Scaled standard deviation including 5 th nearest neighbor
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theoretical prediction 2000

for edge
[Burns, Matchev, Park

O~
‘l

C‘ N
([ [NO-F
\)

A
T
()

o)

35
S

avevlep
=9
O

(X

a® et
® vo'.a“
- 5 -

)
. «.\'I"

;.'é'.

0 Ya¥
(2009)] 0 2000

5/10/16

4000 6000
my,

Pheno 2016




Conclusion

* | have discussed-

O finding kinematic “features” in collider physics data is an essential
step toward the discovery of BSM physics and Voronoi tessellations
have greater role in achieving it.

O in general, Voronoi-based analyses are qualitatively different than
standard analyses: the value of a variable calculated for an event
depends on “neighboring” events in phase space

1 our proposed methods have been tested with 2-dimensional HEP
data.

* Recently, we are involved in finding edge in 3-D and mass measurement of
new physics particle using Voronoi tessellation.

* Apart from above aspects, a wide range of applications are possible with
Voronoi technique. Stay tuned!
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Thank You!
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Method of Edge Detection

« We aim to find edge (cells) in 2D using geometric properties
of Voronoi cells.

 Geometrical properties:
Cell area
Cell perimeter

Number of sides
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Method of Edge Detection

 We aim to find edge (cells) in 2D using geometric properties
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Method of Edge detection

ROC curves

* Signal selection efficiency vs. the
background efficiency for
different values of cut on area,
perimeter, no of neighbor, and
scaled standard deviation.

* ROC curve for Scaled standard
deviation is well-separated
from the ROC curves of other
variables in low background
fraction region.

e Scaled standard deviation is

quite successful in identifying
edge cells.
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Why Voronoi approach?

* Voronoi tessellations have nice properties for use in HEP data:
o Automatic binning

o Preserves maximum spatial resolution: Each cell has its own
bin with shape determined by tessellation

o Applicable in many dimensions

Example: We generate 2000
random data points using pdf

Jf(x,y) =1+sin(6ﬂ\/m)
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Why Voronoi approach?

Binning vs Voronoi tessellations

Color: bin height
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Why Voronoi approach?

Binning vs Voronoi tessellations

Color: bin height
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Why Voronoi approach?

Binning vs Voronoi tessellations

Color: bin height Color: Cell area
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(Debnath, Gainer, Kim, Matchev, 2015)

Advantage of Voronoi method: Each cell contains one data point prevents poor
choices of binning from obscuring structure in the data.
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