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❏ We will demonstrate a technique that allows for the determination of masses 
in cascade decays by utilizing correlations in the full phase space distribution 
with small samples

❏ No (conclusive) BSM discoveries at LHC yet

❏ Discoveries are likely to come with limited numbers of events

❏ Essential to be able to make maximal use of small samples

❏ This technique will outperform traditional edge/endpoints mass determination

❏ Along the way, we’ll see some interesting structure in phase space

Motivation
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Introduction: the Dalitz plot (3-body decay)
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❏ Kinematic invariants 
used as coordinates

❏ Phase space weight is 
flat in these 
coordinates

❏ Mass spectrum is 
encoded by the shape 
of the boundary
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Mass information on the boundary is 
typically expressed in terms of 
endpoints.

Endpoints are 1-d projections of the 
full phase space.

Endpoints correspond to momentum 
configurations which span a lower 
dimensional subspace. 
(Collinear in this case.)

Introduction: the Dalitz plot (3-body decay)
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Note that the endpoints are mass differences.



❏ Phase space weight is flat

❏ With a large number of events, 
the corners of the Dalitz region 
are well populated

Introduction: the Dalitz plot (3-body decay)
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Introduction: the Dalitz plot (3-body decay)

❏ Phase space weight is flat

❏ With a large number of events, 
the corners of the Dalitz region 
are well populated

❏ But with fewer events, the small 
area that defines the endpoints 
will not contain many events

N = 500

6

GeV2

G
eV

2



Introduction: the Dalitz plot (3-body decay)

❏ Phase space weight is flat

❏ With a large number of events, 
the corners of the Dalitz region 
are well populated

❏ But with fewer events, the small 
area that defines the endpoints 
will not contain many events

N = 500N = 50not 
populated

not 
populated
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The full phase space advantage

❏ The endpoints inferred from finite 
samples only set lower bounds 
on the true endpoints

❏ There are incorrect mass 
spectrum hypotheses that the 
endpoints cannot rule out

N = 500N = 50not 
populated

not 
populated

Incorrect boundary, 
but consistent with 
endpoints
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The full phase space advantage

❏ The endpoints inferred from finite 
samples only set lower bounds 
on the true endpoints

❏ There are incorrect mass 
spectrum hypotheses that the 
endpoints cannot rule out

❏ There are events near the 
boundary, but not near any 
endpoint, which could have ruled 
it out

N = 500N = 50not 
populated

not 
populated

Incorrect boundary, 
but consistent with 
endpoints

can rule out 
incorrect boundary
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Higher multiplicity decays

4 body

5 body

❏ One invisible particle
❏ Depicted as chain of 2-body 

decays, but intermediate particles 
could be off-shell giving a 3-body 
vertex
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Surprise: For 4-body decays, the phase space 
weight is greater near the boundary!

The most useful events are the most plentiful.

Fitting a boundary to the data, even with a 
limited number of events, should reconstruct 
the masses efficiently.

4-body boundary enhancement

schematic only

N = 50
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Surprise: For 4-body decays, the phase space 
weight is greater near the boundary!

The most useful events are the most plentiful.

Fitting a boundary to the data, even with a 
limited number of events, should reconstruct 
the masses efficiently.

4-body boundary enhancement
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In order to describe this boundary enhancement 
quantitatively, we will need to introduce some notation.

Invariant formalism for 1 → n decay

Kinematics will be described in terms of Lorentz invariant dot products.

Form a n x n matrix out of the dot products.  
Diagonal elements are just the masses 
squared of the daughter particles.
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} n

Overall energy conservation of the parent particle must 
be imposed.

...
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Invariant formalism for 1 → 4 decay
In order to express the enhancement near the boundary, we need a sort of “radial” 
coordinate that measures our distance from the boundary.

The boundary is composed of kinematic configurations that span lower 
dimensional space (a plane for 4-body decays).

The matrix M4 becomes singular when the momentum vectors are linearly 
dependent.

ᵂ4 ≡ det M4 = 0 if M4 is singular, so this serves as a good radial coordinate.

ᵂ4 = 0 on the boundary, ᵂ4 > 0 inside
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Invariant formalism for 1 → 4 decay

ᵂ4> 0

ᵂ4= 0ᵂ4 = 0 on the boundary, ᵂ4 > 0 inside

Yang & Byers 1964

In terms of our “radial coordinate” there is a power law enhancement in 
the phase space weight approaching the boundary

(This can be traced back to the singular [linearly dependent] nature of 
the kinematic configurations that define the boundary.)

Still true, even with intermediate resonances in the decay.
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4-body likelihood functions
➔ To find the masses, we are really only interested in the boundary.

➔ But what we see are events inside, but mostly close to, the 
boundary. (However, see the previous talk �)

We are interested 
in this

We see these

We will use a likelihood function to fit the observed 
events to an optimal hypothesis for the shape of the 
boundary (i.e. mass spectrum)

The likelihood function must satisfy the following two conditions:
❏ Disfavor spectrum hypotheses that leave events outside its 

boundary

❏ Prefers spectrum hypotheses when events lie inside and near its 
boundary
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4-body likelihood functions

❏ Event outside → excluded

❏ Otherwise, favored if events 
near boundary

❏ The spectrum with the highest 
likelihood is the winner!

For comparison, a likelihood function based on 
1-d distributions, aka endpoints.

Endpoints are computed for each mass 
spectrum hypothesis.

Spectrum excluded if any event is beyond any 
endpoint predicted by the hypothesis.

Otherwise, spectrum favored if observed 
endpoint is near predicted endpoint.
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4-body results
Topology:

(invisible)

Histogram of winning mass spectra for many 
samples of Monte Carlo data, each with 100 
events.

True value indicated by red.
Phase space boundary winners in blue.
Endpoint winners in cyan.

Note that the spread in the endpoint results 
is correlated:  it reflects the insensitivity of 
endpoints to overall scale (they measure 
differences).

The boundary method gets both the scale 
and the differences! (Not visible here.)
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What happens for n > 4 ?
n = 3 → flat. n = 4 → boundary enhanced. n = 5 → ???

symmetric

3 x 5 momentum coordinates 
- 4 conservation constraints 

- 3 irrelevant rotations
= 8 degrees of freedom

Cartesian:

Invariants:
10 invariants

- 1 constraint
= 9 degrees of freedom

9 would be the right number if we were in 5 dimensions.  In 4 dimensions, 
one more constraint is needed.
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What happens for n > 4 ?
Generalization of the formalism:

We now have 5 particles, so define
ᵂ5 ≡ det M5

We will require ᵂ5 = 0, ensuring the event will be realizable in 4 dimensions.
This is our extra constraint.

The boundary of phase space is still given by ᵂ4 = 0 where now ᵂ4 is a sum 
over all choices of 4 out of the 5 particles.
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What happens for n > 4 ?

Yang & Byers 1964

No ᵂ4 dependence?  Phase space weight is flat again?

Not so fast… we are working in the coordinate system of the {i, j}.
The ᵂ5 = 0 constraint is non-linear in these coordinates.  

Evaluating the delta function gives a Jacobian
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What happens for n > 4 ?
Punch line:  This Jacobian restores the 
boundary enhancement, and makes it even 
stronger than the 4-body case!

schematic only

N = 1000

Intuition:  when all 5 particles span a plane, the 
matrix M5 is even more singular.
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5-body likelihood functions
Example topology

24

❏ Event outside → excluded

❏ Otherwise, favored if events 
near boundary

❏ The spectrum with the 
highest likelihood is the 
winner!
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The extra delta 
function let’s us take 
one integral over an 
unobserved variable

Which gives the 
enhancement in 
terms of the 
Jacobian of ᵂ5 



5-body likelihood functions
Example topology

Question: If two particles from one vertex 
are both visible, couldn’t I just combine 
them and think of this as a 4-body event?
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Yes.

There is an interesting factorization relation:
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ᵂ4 ( )= x
The boundary of the 5-body event coincides with the boundary of the corresponding 4-body event.



5-body results
Topology: (invisible)

Histogram of winning mass spectra for many 
samples of Monte Carlo data, each with 100 
events.

True value indicated by red.
Phase space boundary winners in blue.
Endpoint winners in cyan.

Note insensitivity of endpoints to overall scale 
again.

The boundary method rapidly 
converges on the correct masses, even 
for this complicated and high-
multiplicity final state.
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❏ A likelihood technique that considers the full dimensionality of phase 
space can then rapidly reconstruct the involved masses with few events

❏ The mass content of particle decays is encoded in the shape of the phase space 
boundary

❏ For n > 3 final states, events preferentially cluster on the boundary, which 
becomes stronger as the n increases!

❏ This powerful technique easily outperforms traditional techniques which are based 
on 1-d projections of phase space

❏ Interesting structure in phase space that hasn’t been explored yet!

Conclusions
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