A Supersymmetric Two-Field Relaxion Model

Natsumi Nagata Univ. of Minnesota

Phenomenology 2016 May. 10, 2016 University of Pittsburgh

Based on J. L. Evans, T. Gherghetta, N. Nagata, Z. Thomas, [arXiv:1602.04812].

Supersymmetry (SUSY)

Leading candidate for physics beyond the Standard Model (SM)

- Solution to the naturalness problem
- SUSY grand unification
- Dark matter candidates

Current constraints on SUSY

- Null results for SUSY searches
- 125 GeV Higgs mass

SUSY scale may be much higher than the EW scale.

Relaxion mechanism

P. W. Graham, D. E. Kaplan, S. Rajendran, Phys. Rev. Lett. 115, 221801 (2015).

Relaxion

- Axion-like particle
- Scans the Higgs mass parameter

Potential

See also L. F. Abbott (1985), G. Dvali and A. Vilenkin (2013) G. Dvali (2014)

Problems in the original model

Strong CP Problem

The original model uses the Peccei-Quinn axion as the relaxion.

 θ_{QCD} is generically too large after the relaxion stops.

A simple extension

Introduce vector-like fermions charged under new strong (non-QCD) interaction.

Periodic potential is generated by this new interaction.

For the Higgs VEV to give a sizable effect on the periodic potential, the new strong dynamics and the fermions should be the TeV scale.

Extensions of the original relaxion model

Two-field relaxion model

J. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolas, G. Servant (2015). Second field: σ

Neutralize the periodic potential induced by the new strong dynamics.

Its scale can be much higher than the electroweak scale! (no coincidence problem).

 $\Lambda \lesssim 10^9 \,\, {
m GeV}$ Physics above the cut-off scale?

Application to the SUSY little hierarchy problem

B. Batell, G. F. Giudice, M. McCullough, JHEP **1512**, 162 (2015).

- Relaxion scans soft masses instead of the Higgs mass parameter
- Succeed the shortcomings in the original model

Two-field SUSY relaxion model (this talk)

SUSY two-field relaxion model

Singlet chiral superfields

$$S = \frac{s + i\phi}{\sqrt{2}} + \sqrt{2}\,\widetilde{\phi}\,\theta + F_S\theta\theta \ ,$$
$$T = \frac{\tau + i\sigma}{\sqrt{2}} + \sqrt{2}\,\widetilde{\sigma}\,\theta + F_T\theta\theta \ ,$$

Superpotential

$$\begin{split} W_{S,T} &= \frac{1}{2}m_SS^2 + \frac{1}{2}m_TT^2 ,\\ \text{(shift-symmetry breaking)} \end{split} \qquad \begin{array}{l} Q_i \rightarrow Q_i ,\\ H_uH_d \rightarrow H_uH_d , \end{array}$$

$$W_{\mu} &= \mu_0 e^{-\frac{a_HS}{f_{\phi}}} H_uH_d \qquad \qquad \text{odoes not have a renormalizable coupling with the Higgs fields.} \end{aligned}$$

$$W_{\text{gauge}} &= \left(\frac{1}{2g_a^2} - i\frac{\Theta_a}{16\pi^2} - \frac{c_aS}{16\pi^2 f_{\phi}}\right) \operatorname{Tr}(\mathcal{W}_a\mathcal{W}_a) \qquad \qquad \text{See K. Choi and S. H. Im (2015),} \\ \text{(a: SM, SU(N))} \qquad \qquad \text{See K. Choi and S. H. Im (2015),} \\ W_N &= m_N N\bar{N} + ig_S SN\bar{N} + ig_T TN\bar{N} + \frac{\lambda}{M_L} H_u H_d N\bar{N} , \end{aligned}$$
Kabler potential does not (N: charged under SU(N))

Kahler potential does not violate shift symmetries.

J. L. Evans, T. Gherghetta, N. Nagata, Z. Thomas, [arXiv:1602.04812].

Shift symmetries

$$\begin{aligned} \mathcal{S}_S: \ S \to S + i\alpha f_{\phi} \ , \\ T \to T \ , \\ Q_i \to e^{iq_i\alpha}Q_i \ , \\ H_u H_d \to e^{iq_H\alpha}H_u H_d \ , \end{aligned}$$
$$\begin{aligned} \mathcal{S}_T: \ S \to S \ , \\ T \to T + i\beta f_{\sigma} \ , \\ Q_i \to Q_i \ , \\ H_u H_d \to H_u H_d \ , \end{aligned}$$

Soft masses

 φ and σ have large field values during the evolution.

• $F_S \neq 0$, $F_T \neq 0$. • SUSY is broken by these fields!

Scalar masses

(e.g.)
$$\int d^4\theta \frac{1}{M_*^2} (S+S^*)^2 Q_i Q_i^* \quad \Longrightarrow \quad \widetilde{m} \sim \frac{F_S}{M_*} \sim \frac{m_S \phi}{M_*}$$

Gaugino masses

$$\int d^2\theta \frac{c_a S}{16\pi^2 f_{\phi}} \operatorname{Tr}(\mathcal{W}_a \mathcal{W}_a) \qquad \Longrightarrow \quad M_a \sim \frac{c_a F_S}{16\pi^2 f_{\phi}} \sim \frac{c_a m_S \phi}{16\pi^2 f_{\phi}}$$

 ϕ scans soft masses during the evolution!

B. Batell, G. F. Giudice, M. McCullough, JHEP 1512, 162 (2015).

EWSB condition

$$\mathcal{D}(\phi) \equiv (m_{H_u}^2 + |\mu|^2)(m_{H_d}^2 + |\mu|^2) - |B\mu|^2 < 0$$

<u>Critical value [D(ϕ_*) = 0]</u> $\mu_0 \sim \frac{m_S \phi_*}{f_\phi} \equiv m_{\rm SUSY}$

Cosmological evolution

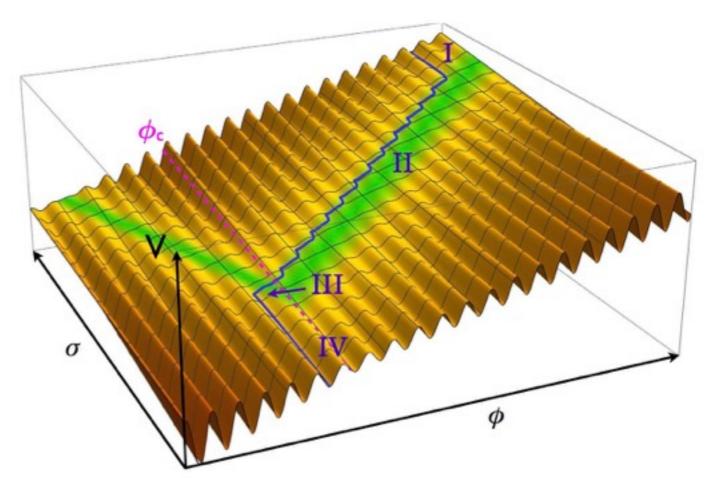
Potential

$$\begin{split} V_{\phi,\sigma}(\phi,\sigma,H_uH_d) &= \frac{1}{2}|m_S|^2\phi^2 + \frac{1}{2}|m_T|^2\sigma^2 + \mathcal{A}\left(\phi,\sigma,H_uH_d\right)\Lambda_N^3\cos\left(\frac{\phi}{f_\phi}\right) \ , \\ \text{with} \\ \mathcal{A}\left(\phi,\sigma,H_uH_d\right) &= \overline{m}_N - \frac{g_S}{\sqrt{2}}\phi - \frac{g_T}{\sqrt{2}}\sigma + \frac{\lambda}{M_L}H_uH_d \ . \\ (\overline{m}_N,g_S > 0, \ g_T < 0, \ \lambda < 0) \end{split}$$

Two-field relaxion mechanism

- I: ϕ stuck. σ rolls.
- II: Both ϕ and σ evolve. A = 0.
- III: EWSB occurs (D(ϕ)<0).
- IV: ϕ stops. σ keeps rolling.
- ϕ needs to track σ

 $|m_T| < |m_S|$



J. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolas, G. Servant (2015).

Constraints

Slow-roll conditions

 $|m_S| \ll H_I$ (*H*_I : Hubble parameter)

We assume inflation is driven by another inflaton field.

ϕ and σ should not dominate vacuum energy

 $\frac{1}{2}|m_S|^2\phi^2$, $\frac{1}{2}|m_T|^2\sigma^2 \ll 3H_I^2M_P^2$ (*M_P*: Planck mass)

SUSY-breaking from inflation sector is sub-dominant

 $H_I \lesssim v$

Low-scale inflation

[or *D*-term inflation??]

Classical rolling

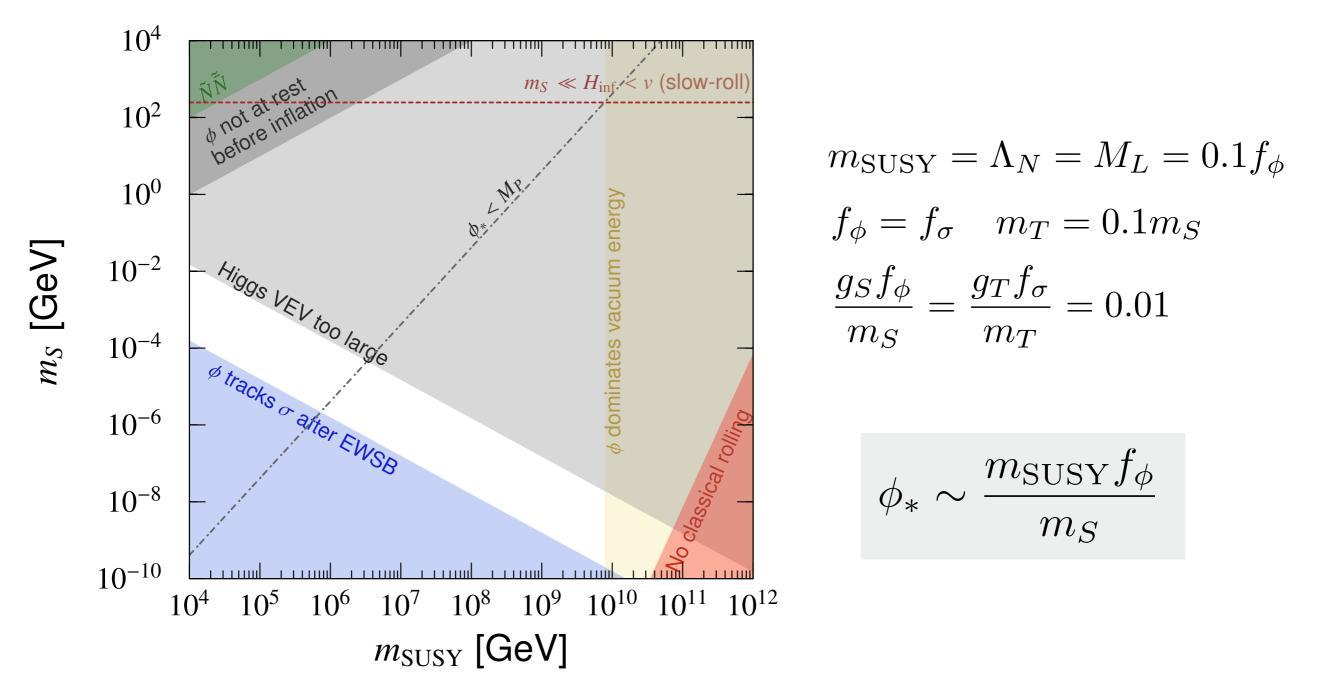
$$\left. \frac{d\sigma}{dt} H_I^{-1} \right| \sim \frac{|m_T|^2 \sigma}{3H_I^2} \gg H_I$$

Typical size of quantum fluctuations

Change of σ during Hubble time

$$\frac{\text{Number of } e\text{-folds}}{N_e \simeq \frac{H_I \Delta \phi}{\left|\frac{d\phi}{dt}\right|} \gtrsim \frac{H_I^2}{|m_S|^2} = 10^{12} \times \left(\frac{H_I}{100 \text{ GeV}}\right)^2 \left(\frac{10^{-4} \text{ GeV}}{|m_S|}\right)^2$$

Results

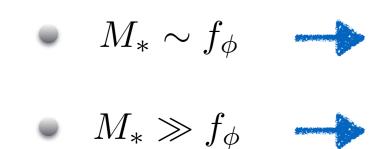


PeV-scale SUSY can be naturalized with sub-Planckian excursion!

J. L. Evans, T. Gherghetta, N. Nagata, Z. Thomas, [arXiv:1602.04812].

Particle spectrum

SUSY particles



Gaugino masses are suppressed by a loop factor compared with scalar masses (mini-split type)

Soft masses are induced by gaugino masses. (similar to gaugino mediation/no-scale scenario)

Relaxion sector

 $\phi \quad \cdots \quad$ Determined by the height of periodic potential.

$$\phi$$
 \cdots Eaten by gravitino (goldstino)

$$m_{3/2} = \frac{F}{\sqrt{3}M_P} \simeq 2 \times \left(\frac{m_{\rm SUSY}}{10^6 \text{ GeV}}\right) \left(\frac{f_{\phi}}{10^8 \text{ GeV}}\right) \text{ keV}$$

<u>Gravitino problem</u>Low reheating temperature

 $m_{\phi}^2 \simeq \frac{\Lambda_N^3 \mathcal{A}}{f_{\phi}^2}$

• Late-time entropy production

- s ··· As heavy as SUSY particles.
- $au, \ \widetilde{\sigma} \ \cdots$ Depending on Kahler potential. Can be as light as gravitino.

•
$$\sigma$$
 ··· m₁

Conclusion

- We proposed a SUSY two-field relaxion model.
- Strong CP problem and coincidence problem are evaded thanks to the two-field relaxion mechanism.
- PeV-scale SUSY can be naturalized with sub-Planckian field excursion.
- There are several issues to study more in cosmology side (inflation model, low H_{inf}, gravitino problem, ...).

Kahler potential

$$K = \kappa (S + S^*, T + T^*) + Z_i (S + S^*, T + T^*) \Phi_i^* e^{2V} \Phi_i$$

+ $\left[U(S + S^*, T + T^*) e^{-\frac{q_H S}{f_\phi}} H_u H_d + \text{h.c.} \right],$

where $\Phi_i = Q_i, H_u, H_d, N, \bar{N}$

Super potential

$$\begin{split} W_{\text{gauge}} &= \left(\frac{1}{2g_a^2} - i\frac{\Theta_a}{16\pi^2} - \frac{c_a S}{16\pi^2 f_\phi}\right) \text{Tr} \mathcal{W}_a \mathcal{W}_a \ ,\\ W_{\text{Yukawa}} &= y_u Q \overline{U} H_u + y_d Q \overline{D} H_d + y_e L \overline{E} H_d \ ,\\ W_\mu &= \mu_0 e^{-\frac{q_H S}{f_\phi}} H_u H_d \ ,\\ W_{S,T} &= \frac{1}{2} m_S S^2 + \frac{1}{2} m_T T^2 \ ,\\ W_N &= m_N N \bar{N} + i g_S S N \bar{N} + i g_T T N \bar{N} + \frac{\lambda}{M_L} H_u H_d N \bar{N} \ . \end{split}$$

Scalar potential

Lagrangian for S and T

$$\mathcal{L} = \mathbf{F}^{\dagger} \mathcal{K}(s,\tau) \mathbf{F} + \left(\mathbf{m} \cdot \mathbf{F} + i \mathbf{g} \cdot \mathbf{F} \widetilde{N} \widetilde{\overline{N}} + \text{h.c.} \right) ,$$

where

$$\mathcal{K} = \frac{1}{2} \begin{pmatrix} \frac{\partial^2 \kappa}{\partial s^2} & \frac{\partial^2 \kappa}{\partial s \partial \tau} \\ \frac{\partial^2 \kappa}{\partial s \partial \tau} & \frac{\partial^2 \kappa}{\partial \tau^2} \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} F_S \\ F_T \end{pmatrix}, \quad \mathbf{g} = \begin{pmatrix} g_S \\ g_T \end{pmatrix}, \quad \mathbf{m} = \frac{1}{\sqrt{2}} \begin{pmatrix} m_S(s+i\phi) \\ m_T(\tau+i\sigma) \end{pmatrix}$$
$$\stackrel{\bullet}{\blacktriangleright} \quad \mathbf{F} = -\mathcal{K}^{-1} \left(\mathbf{m} + i\mathbf{g}\tilde{N}\tilde{\bar{N}} \right)^* .$$

Scalar potential

$$V = \boldsymbol{m}^{\dagger} \mathcal{K}^{-1} \boldsymbol{m}$$

<u>Minimum for s and τ </u>

$$\frac{\partial}{\partial s} \mathcal{K}^{-1}(s,\tau) \simeq \frac{\partial}{\partial \tau} \mathcal{K}^{-1}(s,\tau) \simeq 0 ,$$

The minimum does not depend on ϕ and σ as long as they have large value, since the condition is independent of these fields.

s and τ are constant.

Absence of the σ -Higgs coupling

In the two-field relaxion mechanism, σ should not have a direct coupling to the Higgs fields. (Otherwise, the late time excursion of σ changes the Higgs mass.)

In our model, there is no such a coupling at renormalizable level.

(The Kahler potential depends on T + T*.)

The σ -Higgs couplings are generated by SUSY-breaking effects.

m_T << m_S

 $F_T << F_S$. In this case, F_S is the dominant source of the SUSY-breaking.

○ M* >> f

Again, F_s is the dominant source of the SUSY-breaking.

Particle spectrum

